Respuesta :
1/f = 1/a+1/b
RHS= b+a/ab (taking LCM)
Cross-multiplication: 1/f=a+b/ab
=>ab=(a+b)f
=>f=ab/a+b
RHS= b+a/ab (taking LCM)
Cross-multiplication: 1/f=a+b/ab
=>ab=(a+b)f
=>f=ab/a+b
Answer:
The value of the equation is [tex]f=\frac{ab}{b+a}[/tex].
Step-by-step explanation:
Consider the provided equation.
[tex]\frac{1}{f}=\frac{1}{a}+\frac{1}{b}[/tex]
We need to solve the provided equation for f.
Find the least common multiplier.
Multiply by LCM = a b f
[tex]\frac{1}{f}abf=\frac{1}{a}abf+\frac{1}{b}abf[/tex]
[tex]f\left(b+a\right)=ab[/tex]
Divide both sides by b+a.
[tex]\frac{f\left(b+a\right)}{b+a}=\frac{ab}{b+a}[/tex]
[tex]f=\frac{ab}{b+a}[/tex]
Hence, the value of the equation is [tex]f=\frac{ab}{b+a}[/tex].