Respuesta :

1/f = 1/a+1/b
RHS= b+a/ab (taking LCM)
Cross-multiplication: 1/f=a+b/ab
=>ab=(a+b)f
=>f=ab/a+b

Answer:

The value of the equation is [tex]f=\frac{ab}{b+a}[/tex].

Step-by-step explanation:

Consider the provided equation.

[tex]\frac{1}{f}=\frac{1}{a}+\frac{1}{b}[/tex]

We need to solve the provided equation for f.

Find the least common multiplier.

Multiply by LCM = a b f

[tex]\frac{1}{f}abf=\frac{1}{a}abf+\frac{1}{b}abf[/tex]

[tex]f\left(b+a\right)=ab[/tex]

Divide both sides by b+a.

[tex]\frac{f\left(b+a\right)}{b+a}=\frac{ab}{b+a}[/tex]

[tex]f=\frac{ab}{b+a}[/tex]

Hence, the value of the equation is [tex]f=\frac{ab}{b+a}[/tex].