Respuesta :
Answer:
Option A is correct
[tex]\frac{2x^2+49}{x(x-7)}[/tex]
Step-by-step explanation:
Given that:
[tex]\frac{3x}{x-7}-\frac{x+7}{x}[/tex]
Take LCM of (x-7) and x is, x(x-7)
then;
[tex]\frac{3x(x)-(x+7)(x-7)}{x(x-7)}[/tex]
Using identity rule:
[tex](a+b)(a-b)=a^2-b^2[/tex]
⇒[tex]\frac{3x^2-(x^2-7^2)}{x(x-7)}[/tex]
⇒[tex]\frac{3x^2-(x^2-49)}{x(x-7)}[/tex]
Remove the bracket
⇒[tex]\frac{3x^2-x^2+49}{x(x-7)}[/tex]
Combine like terms:
⇒[tex]\frac{2x^2+49}{x(x-7)}[/tex]
Therefore, [tex]\frac{2x^2+49}{x(x-7)}[/tex] is equivalent to [tex]\frac{3x}{x-7}-\frac{x+7}{x}[/tex]