contestada


What is the factorization of 3x2 – 8x + 5?


(3x – 1)(x + 5)

(3x + 5)(x – 1)

(3x – 1)(x – 5)

(3x – 5)(x – 1)

Respuesta :

we have

[tex]3x^{2} -8x+5[/tex]

Equate the expression to zero to find the roots

[tex]3x^{2} -8x+5=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]3x^{2} -8x=-5[/tex]

Factor the leading coefficient

[tex]3(x^{2} -(8x/3))=-5[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side.

[tex]3(x^{2} -(8x/3)+(16/9))=-5+(16/3)[/tex]

[tex]3(x^{2} -(8x/3)+(16/9))=(1/3)[/tex]

Rewrite as perfect squares

[tex]3(x-(4x/3))^{2}=(1/3)[/tex]

[tex](x-(4x/3))^{2}=(1/9)[/tex]

square roots both sides

[tex](x-\frac{4}{3})=(+/-) \sqrt{\frac{1}{9}}[/tex]

[tex]x=\frac{4}{3}(+/-) \frac{1}{3}[/tex]

the roots are

[tex]x=\frac{4}{3}+ \frac{1}{3}=\frac{5}{3}[/tex]

[tex]x=\frac{4}{3}- \frac{1}{3}=\frac{3}{3}=1[/tex]

so

[tex]3x^{2} -8x+5=3(x-\frac{5}{3})(x-1)=(3x-5)(x-1)[/tex]

therefore

the answer is the option

[tex](3x-5)(x-1)[/tex]

The factored form of the expression will be (3x-5)(x-3)

Quadratic function

Given the quadratic function 3x2 – 8x + 5

Factorizing the expression will give;

3x2 – 8x + 5

= 3x^2 - 3x - 5x  + 5

Factor out the common values

= 3x(x-3) - 5(x-3)

= (3x-5)(x-3)

Hence the factored form of the expression will be (3x-5)(x-3)

Learn more on factorization here: https://brainly.com/question/25829061