Respuesta :
we have
[tex]3x^{2} -8x+5[/tex]
Equate the expression to zero to find the roots
[tex]3x^{2} -8x+5=0[/tex]
Group terms that contain the same variable, and move the constant to the opposite side of the equation
[tex]3x^{2} -8x=-5[/tex]
Factor the leading coefficient
[tex]3(x^{2} -(8x/3))=-5[/tex]
Complete the square. Remember to balance the equation by adding the same constants to each side.
[tex]3(x^{2} -(8x/3)+(16/9))=-5+(16/3)[/tex]
[tex]3(x^{2} -(8x/3)+(16/9))=(1/3)[/tex]
Rewrite as perfect squares
[tex]3(x-(4x/3))^{2}=(1/3)[/tex]
[tex](x-(4x/3))^{2}=(1/9)[/tex]
square roots both sides
[tex](x-\frac{4}{3})=(+/-) \sqrt{\frac{1}{9}}[/tex]
[tex]x=\frac{4}{3}(+/-) \frac{1}{3}[/tex]
the roots are
[tex]x=\frac{4}{3}+ \frac{1}{3}=\frac{5}{3}[/tex]
[tex]x=\frac{4}{3}- \frac{1}{3}=\frac{3}{3}=1[/tex]
so
[tex]3x^{2} -8x+5=3(x-\frac{5}{3})(x-1)=(3x-5)(x-1)[/tex]
therefore
the answer is the option
[tex](3x-5)(x-1)[/tex]
The factored form of the expression will be (3x-5)(x-3)
Quadratic function
Given the quadratic function 3x2 – 8x + 5
Factorizing the expression will give;
3x2 – 8x + 5
= 3x^2 - 3x - 5x + 5
Factor out the common values
= 3x(x-3) - 5(x-3)
= (3x-5)(x-3)
Hence the factored form of the expression will be (3x-5)(x-3)
Learn more on factorization here: https://brainly.com/question/25829061