Can someone explain to me why sin(2ϴ/3)= -1 has no solution. The question is "Exercises 25-38 involve equations with multiple angles. Solve each equation on the interval [0,2pi). Please ASAP. Thank you! :)

Respuesta :

In the interval [tex][0,2\pi)[/tex], you have [tex]\sin x=-1[/tex] for [tex]x=\dfrac{3\pi}2[/tex]. Replacing [tex]x=\dfrac{2\theta}3[/tex], you get

[tex]\dfrac{2\theta}3=\dfrac{3\pi}2\implies\theta=\dfrac32\times\dfrac{3\pi}2=\dfrac{9\pi}4[/tex]

But [tex]2\pi=\dfrac{8\pi}4<\dfrac{9\pi}4[/tex], so that solution for [tex]\theta[/tex] falls outside the interval [tex][0,2\pi)[/tex].