Answer:
Other x intercept is (-3.08,0)
Step-by-step explanation:
One of the x-intercepts of the parabola represented by the equation y = 3x2 + 6x − 10
[tex]y=3x^2+6x-10[/tex]
To find out x intercepts, we replace y with 0 and solve for x
[tex]0=3x^2+6x-10[/tex]
To solve for x we apply quadratic formula
[tex]x=\frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]
[tex]0=3x^2+6x-10[/tex], a=3, b=6,c=-10
Plug in all the values in the formula
[tex]x=\frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]
[tex]x=\frac{-6+-\sqrt{6^2-4(3)(-10)}}{2(3)}[/tex]
[tex]x=\frac{-6+-\sqrt{156}}{6}[/tex]
[tex]x=\frac{-6+-2\sqrt{39}}{6}[/tex]
Divide top and bottom by 3
[tex]x=\frac{-3+-\sqrt{39}}{3}[/tex]
x=1.08167 and x=-3.08167
Round your answer to nearest hundredth
x=1.08 and x=-3.08
Other x intercept is (-3.08,0)