One of the x-intercepts of the parabola represented by the equation y = 3x2 + 6x − 10 is approximately (1.08, 0). The other x-intercept of the parabola is approximately . (Round your answer to the nearest hundredth.)

Respuesta :

Answer:

Other x intercept is (-3.08,0)

Step-by-step explanation:

One of the x-intercepts of the parabola represented by the equation y = 3x2 + 6x − 10

[tex]y=3x^2+6x-10[/tex]

To find out x intercepts, we replace y with 0 and solve for x

[tex]0=3x^2+6x-10[/tex]

To solve for x we apply quadratic formula

[tex]x=\frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]

[tex]0=3x^2+6x-10[/tex], a=3, b=6,c=-10

Plug in all the values in the formula

[tex]x=\frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{-6+-\sqrt{6^2-4(3)(-10)}}{2(3)}[/tex]

[tex]x=\frac{-6+-\sqrt{156}}{6}[/tex]

[tex]x=\frac{-6+-2\sqrt{39}}{6}[/tex]

Divide top and bottom by 3

[tex]x=\frac{-3+-\sqrt{39}}{3}[/tex]

x=1.08167 and x=-3.08167

Round your answer to nearest hundredth

x=1.08 and x=-3.08

Other x intercept is (-3.08,0)