Respuesta :

[tex]\mathbf A=\begin{bmatrix}3&-1\\-10&9\end{bmatrix}[/tex]

The inverse is given by 

[tex]\mathbf A^{-1}=\dfrac1{\det\mathbf A}\mathrm{adj}\,\mathbf A[/tex]

where [tex]\det\mathbf A[/tex] is the determinant of the matrix, and [tex]\mathrm adj\,\mathbf A[/tex] is the adjugate matrix, or transpose of the cofactor matrix.

[tex]\det\mathbf A=\begin{vmatrix}3&-1\\-10&9\end{vmatrix}=3(9)-(-1)(-10)=17[/tex]

[tex]\mathrm{adj}\,\mathbf A=\begin{bmatrix}9&10\\1&3\end{bmatrix}^\top=\begin{bmatrix}9&1\\10&3\end{bmatrix}[/tex]

So the inverse is

[tex]\mathbf A^{-1}=\dfrac1{17}\begin{bmatrix}9&1\\10&3\end{bmatrix}[/tex]

Answer:

C. [ 9/17  1/17 ]

    [10/17 3/17 ]