Respuesta :
By taking a linear expression and looking at -4(x)+4(y)+5(z)=9
we can say that -1=x, 0=y, and 1=z
-4(-1)=4, 4(0)=0, 5(1)=5 So 4+5=9
-2(-1)=2, 2(0)=0, z=1 So 2+1=3
-4(-1)=4, 5(0)=0, So 4=4
we can say that -1=x, 0=y, and 1=z
-4(-1)=4, 4(0)=0, 5(1)=5 So 4+5=9
-2(-1)=2, 2(0)=0, z=1 So 2+1=3
-4(-1)=4, 5(0)=0, So 4=4
Answer:
The correct answer is B. [tex](-1,0,1)[/tex]
Step-by-step explanation:
The given linear system is
[tex]-4x+4y+5z=9[/tex]
[tex]-2x+2y+z=3[/tex]
[tex]-4x+5y=4[/tex]
The augmented matrix is
[tex]\left[\begin{array}{cccc}-4&4&5&|9\\-2&2&1&|3\\-4&5&0&|4\end{array}\right][/tex]
To solve this by Gauss-Jordan elimination means that, we need to reduce to reduced row echelon form.
[tex]-\frac{1}{4}R_1\rightarrow R_1[/tex]
[tex]\left[\begin{array}{cccc}1&-1&-\frac{5}{4} &\:\:\:\:\:\:|-\frac{9}{4} \\-2&2&1&|3\\-4&5&0&|4\end{array}\right][/tex]
[tex]R_2+2R_1\rightarrow R_2[/tex]
[tex]R_3+4R_1\rightarrow R_3[/tex]
[tex]\left[\begin{array}{cccc}1&-1&-\frac{5}{4} &|-\frac{9}{4} \\0&0&-\frac{3}{2} &|-\frac{3}{2} \\0&1&-5&|-5\end{array}\right][/tex]
[tex]R_2\leftrightarrow R_3[/tex]
[tex]\left[\begin{array}{cccc}1&-1&-\frac{5}{4} &|-\frac{9}{4} \\0&1&-5 &|-5 \\0&0&-\frac{3}{2}&|-\frac{3}{2}\end{array}\right][/tex]
[tex]R_1+R_2\rightarrow R_1[/tex]
[tex]\left[\begin{array}{cccc}1&0&-\frac{25}{4} &|-\frac{29}{4} \\0&1&-5 &|-5 \\0&0&-\frac{3}{2}&|-\frac{3}{2}\end{array}\right][/tex]
[tex]-\frac{2}{3}R_3\rightarrow R_3[/tex]
[tex]\left[\begin{array}{cccc}1&0&-\frac{25}{4} &|-\frac{29}{4} \\0&1&-5 &|\:\:-5 \\0&0&1&|\:\:\:\:\:\:\:1\end{array}\right][/tex]
[tex]R_2+5R_3\rightarrow R_2[/tex]
[tex]R_1+\frac{25}{4}R_3\rightarrow R_1[/tex]
[tex]\left[\begin{array}{cccc}1&0&0&|-1 \\0&1&0&|\:\:\:\:\:\:0\\0&0&1&|\:\:\:\:\:\:1\end{array}\right][/tex]
The matrix is now in the reduced row echelon form.
This gives the solution to be,
[tex](-1,0,1)[/tex]