Answer:
Approximately [tex]0.042\; {\rm kg \cdot m^{-3}}[/tex].
Explanation:
Note the unit conversion for mass:
[tex]1\; {\rm g} = 10^{3}\; {\rm mg}[/tex].
[tex]1\; {\rm kg} = 10^{3}\; {\rm g}[/tex].
Therefore:
[tex]\begin{aligned}& 10\; {\rm mg} \times \frac{1\; {\rm g}}{10^{3}\; {\rm mg}} \times \frac{1\; {\rm kg}}{10^{3}\; {\rm g}} \\ =\; & 10\; {\rm mg} \times \frac{1\; {\rm kg}}{10^{6}\; {\rm mg}} \\ =\; & 10^{-5}\; {\rm kg}\end{aligned}[/tex].
Similarly, for volume:
[tex]1\; {\rm mL} = 1\; {\rm cm^{3}}[/tex].
[tex]1\; {\rm m^{3}} = 10^{3}\; {\rm dm^{3}} = 10^{6}\; {\rm cm^{3}}[/tex].
Thus, [tex]1\; {\rm m^{3}} = 10^{6}\; {\rm mL}[/tex].
[tex]\begin{aligned}& 240\; {\rm L} \times \frac{1\; {\rm m^{3}}}{10^{6}\; {\rm mL}} = 2.40\times 10^{-4}\; {\rm m^{3}}\end{aligned}[/tex].
Divide mass by volume to find the mass-to-volume ratio:
[tex]\begin{aligned}\frac{10^{-5}\; {\rm kg}}{2.40 \times 10^{-4}\; {\rm m^{3}}} \approx 0.042\; {\rm kg \cdot m^{-3}}\end{aligned}[/tex].