Respuesta :

[tex]4\sin x\cos x=2\sin2x[/tex]

[tex]-1\le\sin ax\le1[/tex], which means [tex]-2\le2\sin ax\le2[/tex], which means the maximum value is 2.

The maximum value of [tex]f(x) = 4\cdot \sin x\cdot \cos x[/tex] is 2 for [tex]x = \frac{\pi}{4}+\pi\cdot i[/tex], [tex]\forall \,i\in \mathbb{Z}[/tex].

In this question we should use the following trigonometric identity to simplify the expression described on statement:

[tex]\sin 2x = 2\cdot \sin x \cdot \cos x[/tex] (1)

Then, the expression can be rewritten as following:

[tex]f(x) = 2\cdot \sin 2x[/tex] (2)

Sine is a periodic function bounded between 0 and 1. Hence, we must find the set of solutions such that sine reaches its maximum. That is to say:

[tex]\sin 2x = 1[/tex]

[tex]2\cdot x = \sin^{-1} 1[/tex]

[tex]2\cdot x = \frac{\pi}{2}+2\pi\cdot i[/tex], [tex]\forall \,i\in \mathbb{Z}[/tex]

[tex]x = \frac{\pi}{4}+\pi\cdot i[/tex], [tex]\forall \,i\in \mathbb{Z}[/tex]

Hence, the maximum value of [tex]f(x) = 4\cdot \sin x\cdot \cos x[/tex] is 2 for [tex]x = \frac{\pi}{4}+\pi\cdot i[/tex], [tex]\forall \,i\in \mathbb{Z}[/tex].

We kindly invite to check this question on maxima and minima: https://brainly.com/question/12870574