Respuesta :

If f(x)=1/9x-2
then f^-1(x) will be
lets assume f(x)=y
y=1/9x-2
y+2=1/9x
9(y+2)=x
f^-1(x)=9(y+2)

rest u can do with the same method

we have

[tex]f(x)=\frac{1}{9}x-2[/tex]

Let

[tex]y=f(x)[/tex]

[tex]y=\frac{1}{9}x-2[/tex]

To find the inverse

Exchanges the variables x for y and y for x

[tex]x=\frac{1}{9}y-2[/tex]

Isolate the variable y

Multiply by [tex]9[/tex] both sides

[tex]9x=y-18[/tex]

Adds [tex]18[/tex] both sides

[tex]9x+18=y-18+18[/tex]

[tex]y=9x+18[/tex]

Let

[tex]f^{-1}(x)=y[/tex]

[tex]f^{-1}(x)=9x+18[/tex] -------> the inverse function

therefore

the answer is

[tex]f^{-1}(x)=9x+18[/tex]