first off, see how much 8700 as principal, yields at 3% APR
that is [tex]\bf \qquad \textit{Simple Interest Earned}\\\\
I = Prt\qquad
\begin{cases}
I=\textit{interest earned}\\
P=\textit{original amount deposited}\to& \$8700\\
r=rate\to 3\%\to \frac{3}{100}\to &0.03\\
t=years\to &1
\end{cases}[/tex]
it will yield some amount
subtract that amount from 393
the difference is how much the yield will be on the 6% investment
so
[tex]\bf \qquad \textit{Simple Interest Earned}\\\\
I = Prt\quad
\begin{cases}
I=\textit{interest earned}\\
P=\textit{original amount deposited}\to& \$8700\\
r=rate\to 3\%\to \frac{3}{100}\to &0.03\\
t=years\to &1
\end{cases}
\\\\\\
\implies \boxed{?}\\\\
-----------------------------\\\\
\textit{how much to invest at 6\%?}
\\\\\\
[/tex]
[tex]\bf \qquad \textit{Simple Interest Earned}\\\\
(393-\boxed{?}) = Prt\quad
\begin{cases}
I=\textit{interest earned}\\
P=\textit{original amount deposited}\to& \$\\
r=rate\to 6\%\to \frac{6}{100}\to &0.06\\
t=years\to &1
\end{cases}
\\\\\\
\textit{solve for "P", to see how much should the Principal be}\\\\
\textit{keep in mind that }P+\boxed{?}=393\leftarrow \textit{both yields added}[/tex]