Respuesta :
12 nickels and 10 dimes
---------------
0.05n + 0.10d = 1.40
n + d = 20
-------------------
substitution-
n+d = 20 changes to d = 20 - n
0.05n + 0.10(20-n) = 1.40
0.05n + 2 - 0.10n = 1.40
-0.05n -2 -2
-0.05n = -0.60
n = 12
Replace n with 12 and solve for d
---------------------------------
---------------
12 + d = 20
d = 8
---------------
0.05n + 0.10d = 1.40
n + d = 20
-------------------
substitution-
n+d = 20 changes to d = 20 - n
0.05n + 0.10(20-n) = 1.40
0.05n + 2 - 0.10n = 1.40
-0.05n -2 -2
-0.05n = -0.60
n = 12
Replace n with 12 and solve for d
---------------------------------
---------------
12 + d = 20
d = 8
Answer : The number of nickel and dimes in the jar are, 12 and 8 respectively.
Step-by-step explanation :
As we are given that:
Number of nickels = n
Number of dimes = d
As, there are 20 coins in the jar. The equation will be:
[tex]n+d=20[/tex] .........(1)
or,
[tex]d=20-n[/tex] ............(2)
Total value of the coins is $1.40. The equation will be:
As we know that:
1 dime = $ 0.1
1 nickel = $ 0.05
So,
[tex]0.05n+0.1d=1.40[/tex] ........(3)
Now put equation 2 in equation 3, we get:
[tex]0.05n+0.1\times (20-n)=1.40[/tex]
[tex]0.05n+2-0.1n=1.40[/tex]
[tex]0.05n+2-0.1n=1.40[/tex]
[tex]2-0.05n=1.40[/tex]
[tex]0.05n=2-1.40[/tex]
[tex]0.05n=0.6[/tex]
[tex]n=\frac{0.6}{0.05}[/tex]
[tex]n=12[/tex]
Now put the value of 'n' in equation 2, we get:
[tex]d=20-n[/tex]
[tex]d=20-12[/tex]
[tex]d=8[/tex]
Thus, the number of nickel and dimes in the jar are, 12 and 8 respectively.