first off, let us find the slope of it, at that point, so we can plug it in the point-slope form
thus [tex]\bf r=1-cos(\theta)\qquad
\begin{cases}
\theta=\frac{\pi }{3}\\
--------------\\
r=1-cos\left( \frac{\pi }{3} \right)\to 1-\frac{1}{2}\to \frac{1}{2}
\end{cases} \\\\
-----------------------------\\\\
\left. \cfrac{dr}{d\theta} \right|_{\theta=\frac{\pi }{3}}\implies \cfrac{dr}{d\theta} =0-[-sin(\theta)]\to sin(\theta)\qquad when\quad \theta=\frac{\pi }{3}
\\\\\\
\cfrac{dr}{d\theta}=sin\left( \frac{\pi }{3} \right)\to \cfrac{\sqrt{3}}{2}\\\\
-----------------------------\\\\
[/tex]
[tex]\bf y-y_1=m(x-x_1)\textit{now, we know that }
\begin{cases}
\theta=\frac{\pi }{3}\\\\
r=\frac{1}{2}\\\\
m=\frac{\sqrt{3}}{2}
\end{cases}
\\\\\\
thus\implies y-\cfrac{1}{2}=\cfrac{\sqrt{3}}{2}\left( x-\cfrac{\pi }{3} \right)
\\\\\\
y=\cfrac{\sqrt{3}}{2}x-\cfrac{\sqrt{3}\ \pi }{6}+\cfrac{1}{2}\implies
y=\cfrac{\sqrt{3}}{2}x-\cfrac{\sqrt{3}\ \pi +3}{6}[/tex]
and I gather you could also write it as
[tex]\bf y=\cfrac{\sqrt{3}}{2}x-\cfrac{\sqrt{3}\cdot \pi }{2\cdot 3}+\cfrac{1}{2}\implies y=\cfrac{\sqrt{3}}{2}x-\cfrac{\boxed{\sqrt{3}}\cdot \pi }{2\cdot \boxed{\sqrt{3^2}}}+\cfrac{1}{2}
\\\\\\
y=\cfrac{\sqrt{3}}{2}x-\cfrac{\pi }{2\sqrt{3}}+\cfrac{1}{2}\implies y=\cfrac{\sqrt{3}}{2}x-\cfrac{\pi +\sqrt{3}}{2\sqrt{3}}[/tex]
and that's equivalent as well