Which expression correctly shows how to use the binomial theorem to determine the 4th term in the expansion of (2x²y³ + y)²?

Answer:
[tex]\textsf{B)} \quad \displaystyle \sum^{7}_{k=0} \left(\frac{7!}{3!\:4!} \cdot \left(2x^2y^3\right)^{3}\left(y\right)^{4}\right)=280x^6y^{13}[/tex]
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{5cm} \underline{Binomial Theorem}\\\\$\displaystyle (a+b)^n=\sum^{n}_{k=0}\binom{n}{k} a^{n-k}b^{k}$\\\\\\where \displaystyle \binom{n}{k} = \frac{n!}{(n-k)!k!}\\\end{minipage}}[/tex]
Given expression:
[tex](2x^2y^3+y)^7[/tex]
Therefore:
Therefore:
[tex]\displaystyle (2x^2y^3+y)^7=\sum^{7}_{k=0}\binom{7}{k} (2x^2y^3)^{7-k}(y)^{k}[/tex]
To find the 4th term in the binomial expansion, substitute k = 4 into the equation:
[tex]\implies \displaystyle \sum^{7}_{k=0}\binom{7}{4} \left(2x^2y^3\right)^{7-4}\left(y\right)^{4}[/tex]
[tex]\implies \displaystyle \sum^{7}_{k=0} \left(\frac{7!}{(7-4)!4!} \left(2x^2y^3\right)^{3}\left(y\right)^{4}\right)[/tex]
[tex]\implies \displaystyle \sum^{7}_{k=0} \left(\frac{7!}{3!\:4!} \cdot \left(2x^2y^3\right)^{3}\left(y\right)^{4}\right)[/tex]
[tex]\implies \displaystyle \sum^{7}_{k=0} \left(35 \cdot 8x^6y^9y^4\right)[/tex]
[tex]\implies \displaystyle \sum^{7}_{k=0} \left(280x^6y^{13}\right)\right)[/tex]
Therefore, the expression that correctly shows how to use the binomial theorem to determine the 4th term in the expansion is:
[tex]\displaystyle \sum^{7}_{k=0} \left(\frac{7!}{3!\:4!} \cdot \left(2x^2y^3\right)^{3}\left(y\right)^{4}\right)=280x^6y^{13}[/tex]