Answer:
[tex]f(7)=125\sqrt{5}[/tex]
Step-by-step explanation:
Given function:
[tex]f(x)=r^x, \quad r > 0[/tex]
If f(6) = 125, substitute x = 6 into the function and equate it to 125:
[tex]\implies r^6=125[/tex]
Rewrite 125 as 5³:
[tex]\implies r^6=5^3[/tex]
Cube root both sides of the equation:
[tex]\implies \sqrt[3]{r^6}=\sqrt[3]{5^3}[/tex]
[tex]\textsf{Apply exponent rule} \quad \sqrt[n]{a^b}=a^{\frac{b}{n}}:[/tex]
[tex]\implies r^{\frac{6}{3}}=5^{\frac{3}{3}}[/tex]
[tex]\implies r^{2}=5^1[/tex]
[tex]\implies r^{2}=5[/tex]
Square root both sides of the equation:
[tex]\implies \sqrt{r^2}=\sqrt{5}[/tex]
[tex]\implies r=\pm \sqrt{5}[/tex]
As r > 0 then r = √5
Therefore the function is:
[tex]f(x)=\left(\sqrt{5} \right)^x[/tex]
To calculate f(7), substitute x = 7 into the found function:
[tex]\implies f(7)=\left(\sqrt{5} \right)^7[/tex]
[tex]\textsf{Apply exponent rule} \quad \sqrt[n]{a}=a^{\frac{1}{n}}:[/tex]
[tex]\implies f(7)=(5^{\frac{1}{2}})^7[/tex]
[tex]\textsf{Apply exponent rule} \quad (a^b)^c=a^{bc}:[/tex]
[tex]\implies f(7)=5^{\frac{7}{2}}[/tex]
Rewrite ⁷/₂ as 3 + ¹/₂ :
[tex]\implies f(7)=5^{\left(3+\frac{1}{2}\right)}[/tex]
[tex]\textsf{Apply exponent rule} \quad a^{b+c}=a^b \cdot a^c:[/tex]
[tex]\implies f(7)=5^3 \cdot 5^{\frac{1}{2}}[/tex]
Simplify:
[tex]\implies f(7)=125 \sqrt{5}[/tex]