Respuesta :
Answer:
y = 3(x - 1)^2 - 5
Step-by-step explanation:
Vertex formula: y=a(x+h)^2+k where h is the change in x,
k is the change in y, and a is the coefficient of the function
k=-5
x+h=0
1+h=0 ==> plugin x=1
h=-1
Hence, the equation is:
y=a(x+(-1))^2+(-5)
y=a(x-1)^2 - 5 ==> solve for a
7=a((-1)-1)^2 - 5 ==> plugin point (-1, 7) where x=-1 and y=7
7=a(-2)^2 - 5 ==> simplify
7=4a - 5 ==> (-2)^2 = 2^2 = 4
12 = 4a ==> add 5 on both sides to isolate a
a = 3 ==> divide 4 on both sides to isolate a
Answer: y=3(x-1)^2 - 5
Answer:
- f(x) = 3x² - 6x - 2
------------------------------
Standard form of quadratic function:
- f(x) = ax² + bx + c, where a, b, c - constants
Vertex form of quadratic function:
- f(x) = a(x - h)² + k, where (h, k) is coordinates of the vertex, a- constant
Given vertex (1, - 5), substitute into vertex form:
- f(x) = a( x - 1)² - 5
Given the point (-1, 7) on the graph, substitute into equation and find the value of a:
- 7 = a( - 1 - 1)² - 5
- 7 = 4a - 5
- 4a = 12
- a = 3
Now, substitute the value of a and convert the equation into standard form:
- f(x) = 3(x - 1)² - 5
- = 3(x² -2x + 1) - 5
- = 3x² - 6x + 3 - 5
- = 3x² - 6x - 2