Respuesta :
Answer:
[tex]60^{\circ}[/tex] (assuming that air resistance is negligible.)
Explanation:
Let [tex]g[/tex] denote the gravitational field strength. If air resistance on the projectile is negligible:
- Vertical acceleration of the projectile will be constantly [tex](-g)[/tex]. In other words, [tex]a_{y} = (-g)[/tex].
- Horizontal velocity of the projectile will be constant.
Let [tex]\theta[/tex] denote the angle at which the projectile is launched. Let [tex]v[/tex] denote the initial velocity of the projectile:
- Initial vertical velocity of the projectile will be [tex]u_{y} = v\, \sin(\theta)[/tex].
- Initial horizontal velocity of the projectile will be [tex]u_{x} = v\, \cos(\theta)[/tex].
Also because air resistance is negligible, vertical velocity of the projectile will be [tex]v_{y} = (-u_{y}) = (-v\, \sin(\theta))[/tex] right before the projectile lands. In other words, while the projectile was in the air, the change in vertical velocity would be [tex](-v\, \sin(\theta)) - (v\, \sin(\theta)) = (-2\, v\, \sin(\theta))[/tex].
Divide the change in velocity by acceleration to find the duration of the flight:
[tex]\begin{aligned}t &= \frac{v_{y} - u_{y}}{a_{y}} \\ &= \frac{(-v\, \sin(\theta)) - (v\, \sin(\theta))}{(-g)} \\ &= \frac{(-2\, v\, \sin(\theta))}{(-g)} \\ &= \frac{2\, v\, \sin(\theta)}{g}\end{aligned}[/tex].
Range measures the horizontal distance that this projectile has travelled. At a constant horizontal velocity of [tex]u_{x} = v\, \cos(\theta)[/tex], this projectile would travel a distance of:
[tex]\begin{aligned}(\text{range}) &= u_{x}\, t \\ &= (v\, \cos(\theta))\left(\frac{2\, v\, \sin(\theta)}{g}\right) \\ &= \frac{2\, v^{2}\, \sin(\theta)\, \cos(\theta)}{g}\end{aligned}[/tex].
Apply the double angle identity [tex]2\, \sin(\theta) \, \cos(\theta) = \sin(2\, \theta)[/tex] to further simplify this expression:
[tex]\begin{aligned}(\text{range}) &= \cdots \\ &= \frac{2\, v^{2}\, \sin(\theta)\, \cos(\theta)}{g} \\ &= \frac{v^{2}\, (2\, \sin(\theta)\, \cos(\theta))}{g} \\ &= \frac{v^{2}\, \sin(2\, \theta)}{g}\end{aligned}[/tex].
Note that in this question, [tex]v^{2}[/tex] and [tex]g[/tex] are both constant. Hence, for another angle of elevation [tex]\hat{\theta}[/tex], the range of the projectile will be the same as long as [tex]\sin(2\, \hat{\theta}) = \sin(2\, \theta)[/tex].
[tex]\sin(2\, \hat{\theta}) = \sin(2\, (30^{\circ}))[/tex].
Since [tex]0^{\circ} \le \hat{\theta} \le 90^{\circ}[/tex], [tex]0^{\circ} \le 2\, \hat{\theta} \le 180^{\circ}[/tex]:
[tex]\sin(2\, \hat{\theta}) = \sin(180^{\circ} - 2\, \hat{\theta}) = \sin(2\, (90^{\circ} - \hat{\theta}))[/tex].
Therefore, [tex]\hat{\theta} = 90^{\circ} - \theta = 90^{\circ} - 30^{\circ} = 60^{\circ}[/tex] will ensure that [tex]\sin(2\, \hat{\theta}) = \sin(2\, \theta)[/tex]. Launching the projectile at [tex]60^{\circ}[/tex] will reach the same range.
[tex]\begin{aligned}(\text{new range}) &= \frac{v^{2}\, \sin(2\, (60^{\circ}))}{g} \\ &= \frac{v^{2}\, \sin(2\, (30^{\circ}))}{g} = (\text{original range})\end{aligned}[/tex].