Respuesta :
a. Finding equation of line passing through A and parallel to BC.
[tex]\quad[/tex]
Since our line is parallel to BC, slope of the line is,
[tex]\longrightarrow\rm{m_a=\dfrac{y_B-y_C}{x_B-x_C}}[/tex]
[tex]\longrightarrow\rm{m_a=\dfrac{7-4}{2-(-10)}}[/tex]
[tex]\longrightarrow\rm{m_a=\dfrac{1}{4}}[/tex]
Since our line passes through A, the equation will be,
[tex]\longrightarrow\rm{y-y_A=m_a(x-x_A)}[/tex]
[tex]\longrightarrow\rm{y-(-2)=\dfrac{1}{4}(x-5)}[/tex]
[tex]\longrightarrow\rm{\underline{\underline{x-4y-13=0}}\quad\quad\dots(1)}[/tex]
[tex]\quad[/tex]
b. Finding equation of line passing through B and perpendicular to AC.
[tex]\quad[/tex]
Since our line is perpendicular to AC, slope of the line is,
[tex]\longrightarrow\rm{m_b=-\dfrac{x_A-x_C}{y_A-y_C}}[/tex]
[tex]\longrightarrow\rm{m_b=-\dfrac{5-(-10)}{-2-4}}[/tex]
[tex]\longrightarrow\rm{m_b=\dfrac{5}{2}}[/tex]
Since our line passes through B, the equation will be,
[tex]\longrightarrow\rm{y-y_B=m_b(x-x_B)}[/tex]
[tex]\longrightarrow\rm{y-7=\dfrac{5}{2}(x-2)}[/tex]
[tex]\longrightarrow\rm{\underline{\underline{5x-2y+4=0}}\quad\quad\dots(2)}[/tex]
[tex]\quad[/tex]
c. Finding point of intersection of the above two lines.
[tex]\quad[/tex]
From (1),
[tex]\longrightarrow\rm{x=4y+13}[/tex]
Putting this value of x in (2),
[tex]\longrightarrow\rm{5(4y+13)-2y+4=0}[/tex]
[tex]\longrightarrow\rm{18y+69=0}[/tex]
[tex]\longrightarrow\rm{y=-\dfrac{23}{6}}[/tex]
Then,
[tex]\longrightarrow\rm{x=4\left(-\dfrac{23}{6}\right)+13}[/tex]
[tex]\longrightarrow\rm{x=-\dfrac{7}{3}}[/tex]
Hence the intersection point is [tex]\bf{\left(-\dfrac{7}{3},\ -\dfrac{23}{6}\right)}.[/tex]
Otras preguntas
