Respuesta :
We are asked to find the first derivative of,
[tex]\longrightarrow g(x) = \sqrt{x^2+2x}[/tex]
Here we can write the term [tex]x^2+2x[/tex] by adding and subtracting 1 as,
[tex]x^2+2x = x^2+2x+1-1[/tex]
[tex]x^2+2x = (x+1)^2-1\quad[\because\, x^2+2x+1=(x+1)^2][/tex]
Thus,
[tex]\longrightarrow g(x) = \sqrt{(x+1)^2-1}\quad\dots(1)[/tex]
Now take,
[tex]x+1=\sec\theta\quad\dots(2)[/tex]
[tex]x=\sec\theta-1[/tex]
[tex]dx=\sec\theta\tan\theta\, d\theta[/tex]
[tex]\dfrac{d\theta}{dx}=\dfrac{1}{\sec\theta\tan\theta}\quad\dots(3)[/tex]
Then (1) becomes,
[tex]\longrightarrow g(x) = \sqrt{sec^2\theta-1}[/tex]
We have,
[tex]\sec^2\theta-1=\tan^2\theta[/tex]
So we get,
[tex]\longrightarrow g(x) = \tan\theta[/tex]
Now,
[tex]\longrightarrow g'(x) = \dfrac{d}{dx}\,[\tan\theta][/tex]
By chain rule,
[tex]\longrightarrow g'(x) = \dfrac{d}{d\theta}\,[\tan\theta]\cdot\dfrac{d\theta}{dx}[/tex]
[tex]\longrightarrow g'(x) = \sec^2\theta\cdot\dfrac{1}{\sec\theta\tan\theta}\quad\quad\textrm{[From (3)]}[/tex]
[tex]\longrightarrow g'(x) = \sec\theta\cdot\dfrac{1}{\tan\theta}[/tex]
[tex]\longrightarrow g'(x)=\dfrac{1}{\cos\theta}\cdot\dfrac{\cos\theta}{\sin\theta}[/tex]
[tex]\longrightarrow g'(x)=\dfrac{1}{\sin\theta}\quad\dots(4)[/tex]
But we have,
[tex]\sin^2\theta+\cos^2\theta=1[/tex]
[tex]\sin\theta=\sqrt{1-\cos^2\theta}[/tex]
[tex]\sin\theta=\sqrt{1-\dfrac{1}{\sec^2\theta}}[/tex]
[tex]\sin\theta=\dfrac{\sqrt{\sec^2\theta-1}}{\sec\theta}[/tex]
[tex]\sin\theta=\dfrac{\sqrt{(x+1)^2-1}}{x+1}\quad\quad\textrm{[From (2)]}[/tex]
[tex]\sin\theta=\dfrac{\sqrt{x^2+2x}}{x+1}[/tex]
Hence (4) becomes,
[tex]\longrightarrow\underline{\underline{g'(x)=\dfrac{x+1}{\sqrt{x^2+2x}}}}[/tex]
This is the first derivative of the given function.