Respuesta :
Common logarithm is the logarithm with the base 10, it is written as:
- log a, lg a or log₁₀ a
Natural logarithm is the logarithm with the base of e and is written as ln a.
How to rewrite a logarithm [tex]log_a\ b[/tex] as a ratio of logarithms with a different base c:
- [tex]log_a\ b=log_c\ b\ /\ log_c\ a[/tex]
Apply this to the given logarithm:
a. Common logarithms:
- [tex]log_{1/3}\ 4=log\ 4\ /\ log\ (1/3)[/tex]
b. Natural logarithms:
- [tex]log_{1/3}\ 4=ln\ 4\ /\ ln\ (1/3)[/tex]
Answer:
[tex]\textsf{a)} \quad \dfrac{\log_{10}4}{\log_{10}\dfrac{1}{3}}=-\dfrac{\log_{10}4}{\log_{10}3}[/tex]
[tex]\textsf{b)} \quad \dfrac{\ln 4}{\ln \dfrac{1}{3}}=-\dfrac{\ln 4}{\ln 3}[/tex]
Step-by-step explanation:
Given logarithm:
[tex]\log_{\frac{1}{3}}(4)[/tex]
Part (a)
The common logarithm is the logarithm with base 10.
[tex]\boxed{\textsf{Change of base}: \quad \log_ba=\dfrac{\log_xa}{\log_xb}}[/tex]
Use the change of base formula to rewrite the given logarithm as a ratio of common logarithms:
[tex]\implies \log_{\frac{1}{3}}(4)=\dfrac{\log_{10}4}{\log_{10}\dfrac{1}{3}}[/tex]
[tex]\boxed{\begin{minipage}{5cm} \underline{Log quotient law}\\\\$\log_a \left(\dfrac{x}{y}\right)=\log_ax - \log_ay$\\\end{minipage}}[/tex]
This can be simplified using the log quotient rule:
[tex]\implies \log_{\frac{1}{3}}(4)=\dfrac{\log_{10}4}{\log_{10}\dfrac{1}{3}}[/tex]
[tex]\implies \log_{\frac{1}{3}}(4)=\dfrac{\log_{10}4}{\log_{10}1-\log_{10}3}[/tex]
[tex]\implies \log_{\frac{1}{3}}(4)=\dfrac{\log_{10}4}{0-\log_{10}3}[/tex]
[tex]\implies \log_{\frac{1}{3}}(4)=-\dfrac{\log_{10}4}{\log_{10}3}[/tex]
Part (b)
The natural logarithm is the logarithm with base e.
[tex]\textsf{Also} \; \log_ex=\ln x[/tex]
Use the change of base formula to rewrite the given logarithm as a ratio of natural logarithms:
[tex]\implies \log_{\frac{1}{3}}(4)=\dfrac{\log_{e}4}{\log_{e}\dfrac{1}{3}}[/tex]
[tex]\implies \log_{\frac{1}{3}}(4)=\dfrac{\ln 4}{\ln \dfrac{1}{3}}[/tex]
[tex]\boxed{\begin{minipage}{5cm} \underline{Log quotient law}\\\\$\ln \left(\dfrac{x}{y}\right)=\ln x - \ln y$\\\end{minipage}}[/tex]
This can be simplified using the log quotient rule:
[tex]\implies \log_{\frac{1}{3}}(4)=\dfrac{\ln 4}{\ln \dfrac{1}{3}}[/tex]
[tex]\implies \log_{\frac{1}{3}}(4)=\dfrac{\ln 4}{\ln1 - \ln 3}[/tex]
[tex]\implies \log_{\frac{1}{3}}(4)=\dfrac{\ln 4}{0 - \ln 3}[/tex]
[tex]\implies \log_{\frac{1}{3}}(4)=-\dfrac{\ln 4}{\ln 3}[/tex]
