NO LINKS!!!
Complete the table by finding the balance A when P dollars is invested at rate r for t years and compounded n times per year. (Round your answers to the nearest cent)

P = $2100, r= 8.5%, t = 9 years

n A
1 $
2 $
4 $
12 $
365 $
Continuous $

Respuesta :

Answer:

[tex]\begin{array}{|c|c|}\cline{1-2} \vphantom{\dfrac12} n&A \\\cline{1-2}\vphantom{\dfrac12} 1& \$4376.10\\\vphantom{\dfrac12} 2& \$4442.10\\\vphantom{\dfrac12} 4& \$4476.86\\\vphantom{\dfrac12} 12& \$4500.73\\\vphantom{\dfrac12} 365& \$4512.49\\\vphantom{\dfrac12} \sf Continuous& \$4512.89 \\\cline{1-2} \end{array}[/tex]

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{8.5 cm}\underline{Compound Interest Formula}\\\\$ A=P\left(1+\frac{r}{n}\right)^{nt}$\\\\where:\\\\ \phantom{ww}$\bullet$ $A =$ final amount \\ \phantom{ww}$\bullet$ $P =$ principal amount \\ \phantom{ww}$\bullet$ $r =$ interest rate (in decimal form) \\ \phantom{ww}$\bullet$ $n =$ number of times interest is applied per year \\ \phantom{ww}$\bullet$ $t =$ time (in years) \\ \end{minipage}}[/tex]

Given:

  • P = $2100
  • r = 8.5% = 0.085
  • t = 9 years

Substitute the given values into the formula to create an equation for A in terms of n:

[tex]\implies A=2100\left(1+\dfrac{0.085}{n}\right)^{9n}[/tex]

Substitute each value of n into the equation:

[tex]\begin{aligned}n=1 \implies A&=2100\left(1+\dfrac{0.085}{1}\right)^{9 \times 1}\\&=2100\left(1.085\right)^{9}\\&=\$4376.10\end{aligned}[/tex]

[tex]\begin{aligned}n=2 \implies A&=2100\left(1+\dfrac{0.085}{2}\right)^{9 \times 2}\\&=2100\left(1.0425\right)^{18}\\&=\$4442.10\end{aligned}[/tex]

[tex]\begin{aligned}n=4 \implies A&=2100\left(1+\dfrac{0.085}{4}\right)^{9 \times 4}\\&=2100\left(1.02125\right)^{36}\\&=\$4476.86\end{aligned}[/tex]

[tex]\begin{aligned}n=12 \implies A&=2100\left(1+\dfrac{0.085}{12}\right)^{9 \times 12}\\&=2100\left(1.00708333...\right)^{108}\\&=\$4500.73\end{aligned}[/tex]

[tex]\begin{aligned}n=365 \implies A&=2100\left(1+\dfrac{0.085}{365}\right)^{9 \times 365}\\&=2100\left(1.00023287...\right)^{3285}\\&=\$4512.49\end{aligned}[/tex]

[tex]\boxed{\begin{minipage}{8.5 cm}\underline{Continuous Compounding Formula}\\\\$ A=Pe^{rt}$\\\\where:\\\\ \phantom{ww}$\bullet$ $A =$ final amount \\\phantom{ww}$\bullet$ $P =$ principal amount \\\phantom{ww}$\bullet$ $e =$ Euler's number (constant) \\\phantom{ww}$\bullet$ $r =$ annual interest rate (in decimal form) \\\phantom{ww}$\bullet$ $t =$ time (in years) \\\end{minipage}}[/tex]

[tex]\implies A=2100e^{0.085 \times 9}[/tex]

[tex]\implies A=2100e^{0.765}[/tex]

[tex]\implies A=2100(2.14899437...)[/tex]

[tex]\implies A=\$4512.89[/tex]

Input the calculated values into the table:

[tex]\begin{array}{|c|c|}\cline{1-2} \vphantom{\dfrac12} n&A \\\cline{1-2}\vphantom{\dfrac12} 1& \$4376.10\\\vphantom{\dfrac12} 2& \$4442.10\\\vphantom{\dfrac12} 4& \$4476.86\\\vphantom{\dfrac12} 12& \$4500.73\\\vphantom{\dfrac12} 365& \$4512.49\\\vphantom{\dfrac12} \sf Continuous& \$4512.89 \\\cline{1-2} \end{array}[/tex]

RELAXING NOICE
Relax