Respuesta :

Let [tex]x=\arcsin y[/tex], so that [tex]\sin x=y[/tex] and [tex]\mathrm dx=\dfrac{\mathrm dy}{\sqrt{1-y^2}}[/tex]. Then

[tex]\displaystyle\int_0^{\pi/2}\log\sin x\,\mathrm dx=\int_0^1\dfrac{\log y}{\sqrt{1-y^2}}\,\mathrm dy[/tex]

Integrate by parts, setting

[tex]u=\log y\implies \mathrm du=\dfrac{\mathrm dy}y[/tex]
[tex]\mathrm dv=\dfrac{\mathrm dy}{\sqrt{1-y^2}}\implies v=\arcsin y[/tex]

so the integral is equivalent to

[tex]\displaystyle\int_0^1\dfrac{\log y}{\sqrt{1-y^2}}\,\mathrm dy=uv-\int v\,\mathrm du[/tex]
[tex]=\log y\arcsin y\bigg|_{y=0}^{y=1}-\displaystyle\int_0^1\frac{\arcsin y}y\,\mathrm dy[/tex]

The first term vanishes, since

[tex]\displaystyle\lim_{y\to0^+}\log y\arcsin y=0[/tex]

Now for comparison, consider the function [tex]f(y)=\dfrac1{\sqrt{1-y}}[/tex]. We have that the integral of this function over the same interval is convergent:

[tex]\displaystyle\int_0^1\frac{\mathrm dy}{\sqrt{1-y}}=-2\sqrt{1-y}\bigg|_{y=0}^{y=1}=2[/tex]

so if we could show that [tex]\dfrac{\arcsin y}y\le f(y)[/tex] at least for [tex]0<y<1[/tex], then we're done. Replacing [tex]y[/tex] with [tex]\sin x[/tex] (which means [tex]0<x<\dfrac\pi2[/tex]), the inequality can be written as

[tex]\dfrac1{\sqrt{1-y}}\ge\dfrac{\arcsin y}y\implies \dfrac y{\sqrt{1-y}}\ge\arcsin y\implies\dfrac{\sin x}{\sqrt{1-\sin x}}\ge x[/tex]

This is certainly true, because as [tex]x\to0^+[/tex], both sides approach 0, while as [tex]x\to\dfrac\pi2^-[/tex], you have the right side approach [tex]\dfrac\pi2[/tex] while the left side approaches [tex]+\infty[/tex]. You can compare these two functions' derivatives to see that the left side is monotonic over the interval.

So we've established that

[tex]\displaystyle\frac{\arcsin y}y\le\frac1{\sqrt{1-y}}\implies\int_0^1\frac{\arcsin y}y\,\mathrm dy\le\int_0^1\frac{\mathrm dy}{\sqrt{1-y}}=2[/tex]

so the first integral must converge, and so must

[tex]\displaystyle\int_0^{\pi/2}\log\sin x\,\mathrm dx[/tex]

to some value between -2 and 0.
ACCESS MORE
EDU ACCESS
Universidad de Mexico