Answer:
4.29 (nearest hundredth)
Step-by-step explanation:
Given data set:
To find the mean absolute deviation:
Step 1
Calculate the mean:
[tex]\textsf{Mean}=\dfrac{15+5+12+14+18+16+4}{7}=12[/tex]
Step 2
Calculate the absolute deviations - how far away each data point is from the mean using positive distances.
[tex]\begin{array}{c|c}\vphantom{\dfrac12} \sf Data \; point & \sf Distance \; from \; mean\\\cline{1-2} \vphantom{\dfrac12} 15 & |15-12|=3\\\vphantom{\dfrac12} 5 & |5-12|=7\\\vphantom{\dfrac12} 12 & |12-12|=0\\\vphantom{\dfrac12} 14 & |14-12|=2\\\vphantom{\dfrac12} 18 & |18-12|=6\\\vphantom{\dfrac12} 16 & |16-12|=4\\\vphantom{\dfrac12} 4 & |4-12|=8\end{array}[/tex]
Step 3
Add the absolute deviations together:
[tex]\implies 3+7+0+2+6+4+8=30[/tex]
Step 4
Divide the sum of the absolute deviations by the number of data points:
[tex]\implies \dfrac{30}{7}=4.29[/tex]