In a Psychology class, the students were tested at the end of the course on a final exam. Then they were retested with an equivalent test at subsequent time intervals. Their average scores after t months are given in the table: Time,t (in months)_11 2 3 4 5 Score, y (%) | 86.2 85.7 85.4 85.2 85.0 Using a graphing utility, fit an exponential function to the data. Use the function you found to estimate how long will it take for the test scores to fall below 84%, rounded to the nearest month. y = 86.37 * x. 9966, 10 months y = 99.66 (0.8637)*: 2 months y = 86.37 (0.9966)*: 8 months There is not enough information to determine this

Respuesta :

The functions we found estimate will take 8 months for the test scores to fall below 84%, rounded to the nearest month. The correct option is (c) y = 86.37 (0.9966)*: 8 months.

Given :

n = 5

Let y = [tex]A(B)^{x}[/tex]

ln y = ln [tex]A(B)^{x}[/tex]

ln y = ln A + ln [tex]B^x[/tex]

ln y = ln A + [tex]x[/tex]ln B

↓         ↓          ↓

y         c          b

y = c + bx

∑[tex]x = 15[/tex]

∑[tex]x^{2} = 55[/tex]

∑[tex]xy = 66.6936761[/tex]

∑[tex]y = 22.2451514[/tex]

b = [[tex]n[/tex]∑[tex]xy[/tex]- ∑[tex]x[/tex]∑[tex]y[/tex]] / ([tex]n[/tex]∑[tex]x^{2}[/tex] - (∑[tex]x[/tex])^2)]

b = [5 x 66.6936761 - 15 x 22.2451514]

               5 x 55 - 15 x 15

b = - 0.00338893

c = (∑[tex]y[/tex] - [tex]b[/tex]∑[tex]x[/tex])/n

c = 22.2451514 + 0.00338893

                  5

c = 4.45867116

A = [tex]e^c = 86.3726574[/tex]

B = [tex]e^b = 0.996616806[/tex]

y = [tex]86.3726574[/tex] (0.996616806)^x

when y≤84%

[tex]86.3726574[/tex] (0.996616806)^x ≤84%

x≥8.219

x≈8 months

Function, y = 86.37(0.9966)^x

t = x = 8 months.

It will take 8 months time to take for the test scores to fall below 84%. The correct option is (c) y = 86.37 (0.9966)*: 8 months.

To learn more about the functions visit: https://brainly.com/question/28303908

#SPJ4

ACCESS MORE