The minimal sample size needed for a 95% confidence interval to have a maximal margin of error of 0.1 [tex]$=n=97$[/tex]
As per the question Margin of Error=0.1
[tex]E=0.1\\$Z_{\frac{\alpha}{2} }=1.96$\\\\(a)$\dot{\mathbf{p}}=0.27$[/tex]
We have to determine the sample size :
[tex]$\mathrm{n}=\left(\frac{Z_{\frac{a}{2}}}{\mathrm{E}}\right)^2 \times \hat{\mathrm{p}} \times(1-\hat{\mathrm{p}})=\left(\frac{1.96}{0.1}\right)^2 \times 0.27 \times 0.73=76$[/tex]
[tex]$n=76$[/tex]
At [tex]$95 \%$[/tex] confidence level the [tex]$z$[/tex] is,
[tex]$\begin{aligned}& \alpha=1-95 \%=1-0.95=0.05 \\& \frac{\alpha}{2} =\frac{0.05}{2} =0.025 \\& Z_{\frac{\alpha}{2} }=Z_{0.025}=1.96\end{aligned}$[/tex]
[tex]$\hat{\mathrm{p}}=0.5$[/tex]
Sample size is,
[tex]$\mathrm{n}=\left(\frac{1.96}{0.1}\right)^2 \times 0.5 \times 0.5=97$[/tex]
Therefore the sample size is [tex]$n=97$[/tex]
For more questions on Sample size
https://brainly.com/question/29224576
#SPJ4