Respuesta :
If you're using the app, try seeing this answer through your browser: https://brainly.com/question/3000160
————————
Find the derivative of
[tex]\mathsf{y=\ell n(sec\,x+tan\,x)}\\\\\\ \mathsf{y=\ell n\!\left(\dfrac{1}{cos\,x}+\dfrac{sin\,x}{cos\,x} \right )}\\\\\\ \mathsf{y=\ell n\!\left(\dfrac{1+sin\,x}{cos\,x} \right )}[/tex]
You can treat y as a composite function of x:
[tex]\left\{\! \begin{array}{l} \mathsf{y=\ell n\,u}\\\\ \mathsf{u=\dfrac{1+sin\,x}{cos\,x}} \end{array} \right.[/tex]
so use the chain rule to differentiate y:
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{d}{du}(\ell n\,u)\cdot \dfrac{d}{dx}\!\left(\dfrac{1+sin\,x}{cos\,x}\right)}[/tex]
The first derivative is 1/u, and the second one can be evaluated by applying the quotient rule:
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{\frac{d}{dx}(1+sin\,x)\cdot cos\,x-(1+sin\,x)\cdot \frac{d}{dx}(cos\,x)}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{(0+cos\,x)\cdot cos\,x-(1+sin\,x)\cdot (-\,sin\,x)}{(cos\,x)^2}}[/tex]
Multiply out those terms in parentheses:
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{cos\,x\cdot cos\,x+(sin\,x+sin\,x\cdot sin\,x)}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{cos^2\,x+sin\,x+sin^2\,x}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{(cos^2\,x+sin^2\,x)+sin\,x}{(cos\,x)^2}\qquad\quad (but~~cos^2\,x+sin^2\,x=1)}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{1+sin\,x}{(cos\,x)^2}}[/tex]
Substitute back for [tex]\mathsf{u=\dfrac{1+sin\,x}{cos\,x}:}[/tex]
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{1}{~\frac{1+sin\,x}{cos\,x}~}\cdot \dfrac{1+sin\,x}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{cos\,x}{1+sin\,x}\cdot \dfrac{1+sin\,x}{(cos\,x)^2}}[/tex]
Simplifying that product, you get
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{1}{1+sin\,x}\cdot \dfrac{1+sin\,x}{cos\,x}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{cos\,x}}[/tex]
∴ [tex]\boxed{\begin{array}{c}\mathsf{\dfrac{dy}{dx}=sec\,x} \end{array}}\quad\longleftarrow\quad\textsf{this is the answer.}[/tex]
I hope this helps. =)
Tags: derivative composite function logarithmic logarithm log trigonometric trig secant tangent sec tan chain rule quotient rule differential integral calculus
————————
Find the derivative of
[tex]\mathsf{y=\ell n(sec\,x+tan\,x)}\\\\\\ \mathsf{y=\ell n\!\left(\dfrac{1}{cos\,x}+\dfrac{sin\,x}{cos\,x} \right )}\\\\\\ \mathsf{y=\ell n\!\left(\dfrac{1+sin\,x}{cos\,x} \right )}[/tex]
You can treat y as a composite function of x:
[tex]\left\{\! \begin{array}{l} \mathsf{y=\ell n\,u}\\\\ \mathsf{u=\dfrac{1+sin\,x}{cos\,x}} \end{array} \right.[/tex]
so use the chain rule to differentiate y:
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{d}{du}(\ell n\,u)\cdot \dfrac{d}{dx}\!\left(\dfrac{1+sin\,x}{cos\,x}\right)}[/tex]
The first derivative is 1/u, and the second one can be evaluated by applying the quotient rule:
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{\frac{d}{dx}(1+sin\,x)\cdot cos\,x-(1+sin\,x)\cdot \frac{d}{dx}(cos\,x)}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{(0+cos\,x)\cdot cos\,x-(1+sin\,x)\cdot (-\,sin\,x)}{(cos\,x)^2}}[/tex]
Multiply out those terms in parentheses:
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{cos\,x\cdot cos\,x+(sin\,x+sin\,x\cdot sin\,x)}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{cos^2\,x+sin\,x+sin^2\,x}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{(cos^2\,x+sin^2\,x)+sin\,x}{(cos\,x)^2}\qquad\quad (but~~cos^2\,x+sin^2\,x=1)}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{u}\cdot \dfrac{1+sin\,x}{(cos\,x)^2}}[/tex]
Substitute back for [tex]\mathsf{u=\dfrac{1+sin\,x}{cos\,x}:}[/tex]
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{1}{~\frac{1+sin\,x}{cos\,x}~}\cdot \dfrac{1+sin\,x}{(cos\,x)^2}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{cos\,x}{1+sin\,x}\cdot \dfrac{1+sin\,x}{(cos\,x)^2}}[/tex]
Simplifying that product, you get
[tex]\mathsf{\dfrac{dy}{dx}=\dfrac{1}{1+sin\,x}\cdot \dfrac{1+sin\,x}{cos\,x}}\\\\\\ \mathsf{\dfrac{dy}{dx}=\dfrac{1}{cos\,x}}[/tex]
∴ [tex]\boxed{\begin{array}{c}\mathsf{\dfrac{dy}{dx}=sec\,x} \end{array}}\quad\longleftarrow\quad\textsf{this is the answer.}[/tex]
I hope this helps. =)
Tags: derivative composite function logarithmic logarithm log trigonometric trig secant tangent sec tan chain rule quotient rule differential integral calculus