Respuesta :
The magnetic field for this wave is
[tex]B(x, t)=(9*10^{-8}T )i sin[2\pi (1.5*10^{-8}x-2*10^{14}t )][/tex].
Electromagnetic Wave:
The oscillations between an electric field and a magnetic field produce waves known as electromagnetic waves or EM waves. In other words, magnetic and electric fields oscillate to form electromagnetic (EM) waves.
Given,
Frequency of the wave; [tex]f=[/tex] [tex]2*10^{14} Hz[/tex]
The amplitude of the Electric Field; [tex]E_{0} = 27 N/C[/tex]
We know that Maxwell's equation is given by,
[tex]\frac{E_{0} }{B_0} =c[/tex] .....................(1)
Where,
[tex]E_{0} =[/tex] The amplitude of the electric field
[tex]B_{0}=[/tex] The amplitude of the magnetic field
[tex]c=[/tex] The velocity of light = [tex]3*10^{8} N/m^{2}[/tex]
By solving equation (1), we get
[tex]B_{0} =\frac{27}{3*10^{8} }[/tex]
[tex]B_{0}=9*10^{-8}[/tex]
We know that,
Angular frequency; ω [tex]= 2\pi f[/tex]
The equation of the magnetic field can be given by
[tex]B_{0}sin(kx-\omega t) =B_{0}sin(2\pi (\frac{x}{\lambda}-ft ))[/tex]
[tex]B_{0}sin(kx-\omega t)=9*10^{-8} sin(2\pi (\frac{x}{\lambda}-2*10^{14} t))[/tex].
Hence,
The magnetic field for this wave is
[tex]B(x, t)=(9*10^{-8}T )i sin[2\pi (1.5*10^{-8}x-2*10^{14}t )][/tex].
Learn more about Electromagnetic Wave here
https://brainly.com/question/13874687
#SPJ4