An electromagnetic wave travelling in the x-direction has frequency of 2×10 14 Hz and electric field amplitude of 27 Vm −1. From the options given below, which one describes the magnetic field for this wave?

Respuesta :

The magnetic field for this wave is

[tex]B(x, t)=(9*10^{-8}T )i sin[2\pi (1.5*10^{-8}x-2*10^{14}t )][/tex].

Electromagnetic Wave:

The oscillations between an electric field and a magnetic field produce waves known as electromagnetic waves or EM waves. In other words, magnetic and electric fields oscillate to form electromagnetic (EM) waves.

Given,

         Frequency of the wave;  [tex]f=[/tex] [tex]2*10^{14} Hz[/tex]

         The amplitude of the Electric Field;  [tex]E_{0} = 27 N/C[/tex]

We know that Maxwell's equation is given by,

                                      [tex]\frac{E_{0} }{B_0} =c[/tex]        .....................(1)

Where,

         [tex]E_{0} =[/tex] The amplitude of the electric field

         [tex]B_{0}=[/tex] The amplitude of the magnetic field

            [tex]c=[/tex] The velocity of light = [tex]3*10^{8} N/m^{2}[/tex]

By solving equation (1), we get

                                     [tex]B_{0} =\frac{27}{3*10^{8} }[/tex]

                                      [tex]B_{0}=9*10^{-8}[/tex]

We know that,

         Angular frequency; ω [tex]= 2\pi f[/tex]

The equation of the magnetic field can be given by

                  [tex]B_{0}sin(kx-\omega t) =B_{0}sin(2\pi (\frac{x}{\lambda}-ft ))[/tex]

                  [tex]B_{0}sin(kx-\omega t)=9*10^{-8} sin(2\pi (\frac{x}{\lambda}-2*10^{14} t))[/tex].

Hence,

         The magnetic field for this wave is

                        [tex]B(x, t)=(9*10^{-8}T )i sin[2\pi (1.5*10^{-8}x-2*10^{14}t )][/tex].

Learn more about Electromagnetic Wave here

https://brainly.com/question/13874687

#SPJ4

ACCESS MORE