Respuesta :
Maximize
z = 70(X[tex]s_{1}[/tex] + X[tex]n_{1}[/tex] ) + 40(X[tex]s_{2}[/tex] + X[tex]n_{2}[/tex] ) - 10 (X[tex]s_{1}[/tex] + X[tex]s_{2}[/tex] ) - 15(X[tex]n_{1}[/tex] + X[tex]n_{2}[/tex] )
Subject to the constraints
X[tex]s_{1}[/tex] + X[tex]s_{2}[/tex] ≤ 10000
X[tex]n_{1}[/tex] + X[tex]n_{2}[/tex] ≤ 8000
X[tex]n_{1}[/tex] ≥ 0.4 ( X[tex]s_{1}[/tex] + X[tex]n_{1}[/tex])
X[tex]s_{2}[/tex] ≥ 0.7 ( X[tex]s_{2}[/tex] + X[tex]n_{2}[/tex] )
All Variables ≥ 0
Firstly let us consider X[tex]s_{1}[/tex] and X[tex]s_{2}[/tex] to be the number of pounds of silicon used in fertilizer1 and fertilizer2 respectively
Also, let X[tex]n_{1}[/tex] and X[tex]n_{2}[/tex] be the number of pounds of nitrogen used in fertilizer1 and fertilizer2 respectively
We know that the objective is to maximize profits.
z = [(Selling price of fertilizer1) (Amount of silicon and nitrogen used to produce fertilizer1) + (Selling price of fertilizer2) (Amount of silicon and nitrogen used to produce fertilizer2) - (Cost of silicon) (Amount of silicon used to produce fertilizer I and 2) - (Cost of nitrogen) (Amount of nitrogen used to produce fertilizer I and 2)]
z= 70 (X[tex]s_{1}[/tex] + X[tex]n_{1}[/tex] ) + 40 (X[tex]s_{2}[/tex] + X[tex]n_{2}[/tex]) - 10 (X[tex]s_{1}[/tex] + X[tex]s_{2}[/tex]) - 15( X[tex]n_{1}[/tex] + X[tex]n_{2}[/tex] )
Now
Constraint 1; At most, 100 lb of silicon can be purchased
Amount of silicon used to produce fertilizer 1 and 2 ≤ 10000
X[tex]s_{1}[/tex] + X[tex]s_{2}[/tex] ≤ 10000
Constraint 2; At most, 80 lb of nitrogen can be purchased
Amount of nitrogen used to produce fertilizer 1 and 2 ≤ 8000
X[tex]n_{1}[/tex] + X[tex]n_{2}[/tex] ≤ 8000
Constraint 3; Fertilizer 1 must be at least 40% of nitrogen
Amount of nitrogen used to produce fertilizer 1 ≥ 40% (fertilizer 1)
X[tex]n_{1}[/tex] ≥ 0.4 ( X[tex]s_{1}[/tex] + X[tex]n_{1}[/tex] )
Constraint 4; Fertilizer 2 must be at least 70% of silicon
Amount of silicon used to produce fertilizer 2 ≥ 70% (fertilizer 2)
X[tex]s_{2}[/tex] ≥ 0.7 ( X[tex]s_{2}[/tex] + X[tex]n_{2}[/tex] )
so the formalization of the given linear program is,
Maximize
z = 70(X[tex]s_{1}[/tex] + X[tex]n_{1}[/tex] ) + 40(X[tex]s_{2}[/tex] + X[tex]n_{2}[/tex] ) - 10 (X[tex]s_{1}[/tex] + X[tex]s_{2}[/tex] ) - 15(X[tex]n_{1}[/tex] + X[tex]n_{2}[/tex] )
Subject to the constraints
X[tex]s_{1}[/tex] + X[tex]s_{2}[/tex] ≤ 10000
X[tex]n_{1}[/tex] + X[tex]n_{2}[/tex] ≤ 8000
X[tex]n_{1}[/tex] ≥ 0.4 ( X[tex]s_{1}[/tex] + X[tex]n_{1}[/tex])
X[tex]s_{2}[/tex] ≥ 0.7 ( X[tex]s_{2}[/tex] + X[tex]n_{2}[/tex] )
All Variables ≥ 0
Read more about variables :
https://brainly.com/question/27761372
#SPJ4