7.
Which is a factored form of 8x³ + 27? (1 point)
O (2x+3)(2x+3)(2x + 3)
O (2x+3)(4x² - 6x +9)
○ (2x − 3)(4x² + 6x + 9)
O(2x-9)(4x² + 18x +81)

Respuesta :

Answer:

  • B) (2x + 3)(4x² - 6x + 9)

-----------------------------------

Given sum of cubes, use identity a³ + b³ = (a + b)(a² - ab + b²):

  • 8x³ + 27 =
  • (2x)³ + 3³ =
  • (2x + 3)((2x)² - (2x)(3) + 3²) =
  • (2x + 3)(4x² - 6x + 9)

The matching choice is B.

Answer:

B)  (2x + 3)(4x² - 6x + 9)

Step-by-step explanation:

Given expression:

[tex]8x^3+27[/tex]

Rewrite  8 as 2³  and  27 as 3³:

[tex]\implies 2^3x^3+3^3[/tex]

[tex]\textsf{Apply exponent rule} \quad a^nc^n=(ac)^n:[/tex]

[tex]\implies (2x)^3+3^3[/tex]

[tex]\boxed{\begin{minipage}{5 cm}\underline{Sum of Cubes Formula}\\\\$a^3+b^3=(a+b)(a^2-ab+b^2)\\\end{minipage}}[/tex]

Therefore:

  • a = 2x
  • b = 3

Using the Sum of Cubes formula:

[tex]\begin{aligned}\implies (2x)^2+3^3&=(2x+3)((2x)^2-2x(3)+3^2)\\&=(2x+3)(4x^2-6x+9)\end{aligned}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico