[tex]\displaystyle\int4(6x-1)^{2/3}\,\mathrm dx[/tex]
Let [tex]y=6x-1[/tex], so that [tex]\mathrm dy=6\,\mathrm dx\implies\dfrac{\mathrm dy}6=\mathrm dx[/tex]. Then
[tex]\displaystyle\int4(6x-1)^{2/3}\,\mathrm dx=\int\frac46y^{2/3}\,\mathrm dy[/tex]
Simplifying and applying the power rule gives
[tex]\displaystyle\frac23\frac{y^{5/3}}{\frac53}+C=\frac23\times\frac35y^{5/3}+C=\frac25y^{5/3}+C[/tex]
and back-substituting to get this in terms of [tex]x[/tex], you end up with
[tex]\dfrac25(6x-1)^{5/3}+C[/tex]