Respuesta :

[tex]\displaystyle\int4(6x-1)^{2/3}\,\mathrm dx[/tex]

Let [tex]y=6x-1[/tex], so that [tex]\mathrm dy=6\,\mathrm dx\implies\dfrac{\mathrm dy}6=\mathrm dx[/tex]. Then

[tex]\displaystyle\int4(6x-1)^{2/3}\,\mathrm dx=\int\frac46y^{2/3}\,\mathrm dy[/tex]

Simplifying and applying the power rule gives

[tex]\displaystyle\frac23\frac{y^{5/3}}{\frac53}+C=\frac23\times\frac35y^{5/3}+C=\frac25y^{5/3}+C[/tex]

and back-substituting to get this in terms of [tex]x[/tex], you end up with

[tex]\dfrac25(6x-1)^{5/3}+C[/tex]
ACCESS MORE
EDU ACCESS
Universidad de Mexico