Respuesta :
Answer:
[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & 74\%& 5\% & 79\%\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball &4\% & 17\%& 21\%\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&78\%&22\%& 100\%\\\cline{1-4}\end{array}[/tex]
Step-by-step explanation:
Create a blank frequency table:
[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & & &\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball & & &\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&&& 100\%\\\cline{1-4}\end{array}[/tex]
If 79% of the participants played pickleball, then 21% of the participants do not play pickleball.
Input these percentages into the table:
[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & & & 79\%\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball & & & 21\%\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&&& 100\%\\\cline{1-4}\end{array}[/tex]
Of those who play pickleball, 6% are female.
Therefore, of those who play pickleball, 94% must be male.
The total percentage of those who play pickleball is 79%, so find 6% and 94% of 79%:
[tex]\begin{aligned}\textsf{Plays pickleball (female)}&=6\% \; \sf of \; 79\%\\&=0.06 \times 0.79\\&=0.0474\\&=5\%\; \sf (nearest\;percent)\end{aligned}[/tex]
[tex]\begin{aligned}\textsf{Plays pickleball (male)}&=94\% \; \sf of \; 79\%\\&=0.94 \times 0.79\\&=0.7426\\&=74\%\; \sf (nearest\;percent)\end{aligned}[/tex]
Input the found percentages into the table:
[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & 74\%& 5\% & 79\%\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball & & & 21\%\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&&& 100\%\\\cline{1-4}\end{array}[/tex]
Of those who do not play pickleball, 21% are male.
Therefore, of those who do not play pickleball, 79% must be female.
The total percentage of those who do not play pickleball is 21%, so find 21% and 79% of 21%:
[tex]\begin{aligned}\textsf{Does not play pickleball (male)}&=21\% \; \sf of \; 21\%\\&=0.21 \times 0.21 \\&=0.0441\\&=4\%\; \sf (nearest\;percent)\end{aligned}[/tex]
[tex]\begin{aligned}\textsf{Does not play pickleball (female)}&=79\% \; \sf of \; 21\%\\&=0.79 \times 0.21\\&=0.1659\\&=17\%\; \sf (nearest\;percent)\end{aligned}[/tex]
Input the found percentages into the table and calculate the column totals:
[tex]\begin{array}{|l|c|c|c|}\cline{1-4} \vphantom{\dfrac12}& \sf Male & \sf Female & \sf Total\\\cline{1-4} \vphantom{\dfrac12}\sf Plays \; pickleball & 74\%& 5\% & 79\%\\\cline{1-4} \vphantom{\dfrac12}\sf Does\;not\;play\; pickleball &4\% & 17\%& 21\%\\\cline{1-4} \vphantom{\dfrac12}\sf Column\;Totals&78\%&22\%& 100\%\\\cline{1-4}\end{array}[/tex]