The laplace transform of f(t) is [tex]F(s)=\frac{1}{2s}-\frac{2w}{2(s^2+4w^2)}[/tex] and it's values exists for [tex]s=w\pm\sqrt{3}wi[/tex].
Given,
[tex]f(t)=sin^2(wt)\\\\\therefore sin^2x=\frac{1-cos2x}{2}\\\\f(t)=\frac{1-cos2wt}{2}[/tex]
applying laplace transform on both sides,
[tex]L[f(t)]=L[\frac{1-cos2wt}{2}]\\\\F(s)=\frac{1}{2s}-\frac{2w}{2(s^2+4w^2)}[/tex]
The range for values of s for which F(s) exists is when F(s)≥0
[tex]\frac{1}{2s}-\frac{2w}{2(s^2+4w^2)} \geq0\\\\\frac{1}{2s} \geq\frac{2w}{2(s^2+4w^2)}\\\\2(s^2+4w^2) \geq 2sw\\\\s^2-2sw+4w^2 \geq0[/tex]
using formula to find roots,
[tex]s=\frac{-(-2w)\pm\sqrt{(-2w^2)-4(4w^2)}}{2}\\\\s=\frac{-(-2w)\pm\sqrt{(12w^2}}{2}\\\\s=w\pm\sqrt{3}wi[/tex]
Thus, the laplace transform of f(t) is [tex]F(s)=\frac{1}{2s}-\frac{2w}{2(s^2+4w^2)}[/tex] and it's values exists for [tex]s=w\pm\sqrt{3}wi[/tex].
To learn more about laplace transform refer here
https://brainly.com/question/13077895
#SPJ4