The following data represent (hypothetical) energy consumption normalized to the year 1900. Plot the data. Test the model Q = ae^bx by plotting the transformed data. Estimate the parameters of the model graphically. x
0 10 20 30 40 50 60 70 80 90 100 Year
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 Consumption Q
1.00 2.01 4.06 8.17 16.44 33.12 66.69 134.29 270.43 544.57 1096.63 Make an appropriate trunsformation to fit the model P aeh using Equation (3.4). Estimate a and h

Respuesta :

The correct value of a or initial amount in exponential growth [tex]Q = ae^b^x[/tex] is 789.

Quantity rises over time through a process called exponential growth and it happens when the derivative, or instantaneous rate of change, of a quantity with respect to time is proportionate to the original quantity.

Given that, hypothetical energy consumption normalized to the year 1990 we have to estimate a and h

[tex]Q = ae^b^x[/tex]

[tex]ln Q= ln a+bx[/tex]

For the year 1990:
[tex]x = 0[/tex]     [tex]lnQ =0[/tex]

For the year 1910:

[tex]x= 10[/tex]    [tex]lnQ= 0.698[/tex]

For the year 1920:

[tex]x=20[/tex]    [tex]lnQ= 1.4012[/tex]

For the year 1930:

[tex]x=30[/tex]     [tex]lnQ=2.1[/tex]

For the year 1940:

[tex]x=40[/tex]     [tex]lnQ=2.8[/tex]

For the year 1950:

[tex]x=50[/tex]     [tex]lnQ=3.5[/tex]

For the year 1960:

[tex]x=60[/tex]     [tex]lnQ=4.2[/tex]

For the year 1970:

[tex]x=70[/tex]     [tex]lnQ=4.9[/tex]

For the year 1980:

[tex]x=80[/tex]     [tex]lnQ=5.6[/tex]

For the year 1990:

[tex]x=90[/tex]     [tex]lnQ=6.3[/tex]

For the year 2000:

[tex]x= 100[/tex]     [tex]lnQ= 7[/tex]

Here, estimate the parameters of the model graphically, the slope of line is approximated as follows:

a = [tex]\frac{1096.63-544.57}{7-6.3}[/tex]

a = [tex]\frac{552.06}{0.7}[/tex]

a = 788.657

a ≈ 789

Hence, a or initial amount in exponential growth [tex]Q = ae^b^x[/tex] is 789.

To know more about 'exponential growth' related questions

visit- https://brainly.com/question/12490064

#SPJ4

ACCESS MORE
EDU ACCESS
Universidad de Mexico