The correct value of a or initial amount in exponential growth [tex]Q = ae^b^x[/tex] is 789.
Quantity rises over time through a process called exponential growth and it happens when the derivative, or instantaneous rate of change, of a quantity with respect to time is proportionate to the original quantity.
Given that, hypothetical energy consumption normalized to the year 1990 we have to estimate a and h
[tex]Q = ae^b^x[/tex]
[tex]ln Q= ln a+bx[/tex]
For the year 1990:
[tex]x = 0[/tex] [tex]lnQ =0[/tex]
For the year 1910:
[tex]x= 10[/tex] [tex]lnQ= 0.698[/tex]
For the year 1920:
[tex]x=20[/tex] [tex]lnQ= 1.4012[/tex]
For the year 1930:
[tex]x=30[/tex] [tex]lnQ=2.1[/tex]
For the year 1940:
[tex]x=40[/tex] [tex]lnQ=2.8[/tex]
For the year 1950:
[tex]x=50[/tex] [tex]lnQ=3.5[/tex]
For the year 1960:
[tex]x=60[/tex] [tex]lnQ=4.2[/tex]
For the year 1970:
[tex]x=70[/tex] [tex]lnQ=4.9[/tex]
For the year 1980:
[tex]x=80[/tex] [tex]lnQ=5.6[/tex]
For the year 1990:
[tex]x=90[/tex] [tex]lnQ=6.3[/tex]
For the year 2000:
[tex]x= 100[/tex] [tex]lnQ= 7[/tex]
Here, estimate the parameters of the model graphically, the slope of line is approximated as follows:
a = [tex]\frac{1096.63-544.57}{7-6.3}[/tex]
a = [tex]\frac{552.06}{0.7}[/tex]
a = 788.657
a ≈ 789
Hence, a or initial amount in exponential growth [tex]Q = ae^b^x[/tex] is 789.
To know more about 'exponential growth' related questions
visit- https://brainly.com/question/12490064
#SPJ4