Respuesta :

Answer:

The function can be considered to be a horizontal translation and a vertical reflection of a function that decays by a factor of 5/20 = 1/4 as x increases by 2.

.. y = -20(1/4)^((x +2)/2)

This can be simlified to

.. y = -5*(1/2)^x

_____

If you allow vertical translation, any number of growth or decay functions can be written that will have these two points on their curve. The graph shows a growth function that passes through the same two points.

Step-by-step explanation:

Answer:

[tex]y=10e^{x\ln4}=10(4)^x[/tex]

[tex]y=0.4e^{-x\ln3}=0.4(3)^{-x}[/tex]

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{9 cm}\underline{General form of an Exponential Function with base $e$}\\\\$y=ae^{kx}$\\\\where:\\\phantom{ww}$\bullet$ $a$ is the initial value ($y$-intercept). \\ \phantom{ww}$\bullet$ $e$ is Euler's number. \\ \phantom{ww}$\bullet$ $k$ is some constant.\\\end{minipage}}[/tex]

Given points:

  • (1, 40)
  • (3, 640)

Substitute the points into the formula to create two equations:

[tex]\implies ae^{k}=40[/tex]

[tex]\implies ae^{3k}=640[/tex]

Divide the equations to eliminate a and solve for k:

[tex]\implies \dfrac{ae^{3k}}{ae^{k}}=\dfrac{640}{40}[/tex]

[tex]\implies \dfrac{e^{3k}}{e^{k}}=16[/tex]

[tex]\implies e^{2k}=16[/tex]

[tex]\implies \ln e^{2k}=\ln 16[/tex]

[tex]\implies \ln e^{2k}=2\ln 4[/tex]

[tex]\implies 2k=2\ln 4[/tex]

[tex]\implies k=\ln 4[/tex]

Substitute the found value of k into the formula, along with one of the points, and solve for a:
[tex]\implies ae^{\ln 4}=40[/tex]

[tex]\implies 4a=40[/tex]

[tex]\implies a=10[/tex]

Therefore, the exponential function for points (1, 40) and (3, 640) is:

[tex]\implies y=10e^{x\ln4}[/tex]

[tex]\implies y=10(e^{\ln 4})^x[/tex]

[tex]\implies y=10(4)^x[/tex]

----------------------------------------------------------------------------------------

Given points from the graph:

  • (-3, 10.8)
  • (-2, 3.6)

Substitute the points into the formula to create two equations:

[tex]\implies ae^{-2k}=3.6[/tex]

[tex]\implies ae^{-3k}=10.8[/tex]

Divide the equations to eliminate a and solve for k:

[tex]\implies \dfrac{ae^{-3k}}{ae^{-2k}}=\dfrac{10.8}{3.6}[/tex]

[tex]\implies \dfrac{e^{-3k}}{e^{-2k}}=3[/tex]

[tex]\implies e^{-k}=3[/tex]

[tex]\implies \ln e^{-k}=\ln 3[/tex]

[tex]\implies -k=\ln 3[/tex]

[tex]\implies k=-\ln 3[/tex]

Substitute the found value of k into the formula, along with one of the points, and solve for a:
[tex]\implies ae^{2\ln 3}=3.6[/tex]

[tex]\implies 9a=3.6[/tex]

[tex]\implies a=0.4[/tex]

Therefore, the exponential function for points (1, 40) and (3, 640) is:

[tex]\implies y=0.4e^{-x\ln3}[/tex]

[tex]\implies y=0.4(e^{\ln 3})^{-x}[/tex]

[tex]\implies y=0.4(3)^{-x}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico