Answer:
Approximately [tex]0.719\; {\rm m}[/tex].
Explanation:
Let [tex]G[/tex] denote the constant of universal gravitation. Let [tex]m_{a}[/tex] and [tex]m_{b}[/tex] denote the mass of two objects. By Newton's Law of Universal Gravitation, if the distance between the two objects is [tex]r[/tex], the gravitational force of one object on the other will be:
[tex]\begin{aligned}F &= \frac{G\, m_{a}\, m_{b}}{r^{2}}\end{aligned}[/tex].
In this question, it is given that [tex]G \approx 6.673 \times 10^{-11}\; {\rm N \cdot m^{2} \cdot kg^{-2}}[/tex]. The mass of the two objects are [tex]m_{a} = 0.803\; {\rm kg}[/tex] and [tex]m_{b} = 0.803\; {\rm kg}[/tex]. The gravitational force of one object on the other is [tex]F = 8.27 \times 10^{-11}\; {\rm N}[/tex].
Rearrange the equation to find the distance [tex]r[/tex] between these two objects:
[tex]\begin{aligned}r &= \sqrt{\frac{G\, m_{a}\, m_{b}}{F}} \\ &\approx \sqrt{\frac{(6.673 \times 10^{-11}\; {\rm N \cdot m^{2} \cdot kg^{-2}})\, (0.803\; {\rm kg})\, (0.803\; {\rm kg})}{8.27 \times 10^{-11}\; {\rm N}}} \\ &= \sqrt{\frac{(6.673 \times 10^{-11})\, (0.803)\, (0.803)}{(8.27 \times 10^{-11})}}\; {\rm m} \\ &\approx 0.719\; {\rm m}\end{aligned}[/tex].