Respuesta :
[tex]{ \red{ \sf{given:-}}}[/tex]
[tex]{ \purple{ \sf{ a_{p} = a}}}[/tex]
[tex]{ \purple{ \sf{ a_{q} = b}}}[/tex]
[tex]{ \purple{ \sf{ a_{r} = c}}}[/tex]
L.H.S. = [tex]{ \blue{ \sf{ {a}^{q - r} \: . \: {b}^{r - p} \: . \: {c}^{p - q}}}} [/tex]
Let,
[tex]{ \orange{ \sf{ {ar}^{p - 1} = a}}}[/tex]
[tex]{ \orange{ \sf{ {ar}^{q - 1}} = b}} [/tex]
[tex]{ \orange{ \sf{ {ar}^{r - 1} = c}}}[/tex]
By considering L.H.S.
[tex]{ \red{ \sf{( { {ar}^{p - 1}) }^{q - r} }}} \: . \: { \red{ \sf{( { {ar}^{q - 1}) }^{r - p} }}} \: . \: { \red{ \sf{( { {ar}^{r - 1}) }^{p - q} }}}[/tex]
[tex]{ \purple{ \sf{ {(a)}^{ \cancel{q} - \cancel{r} + \cancel{r} - \cancel{p} + \cancel{p} - \cancel{q}}}}} \: . \: { \purple{ \sf{ {(r)}^{(p - 1)(q - r)(q - 1)(r - p)(r - 1)(p - q)}}}} [/tex]
[tex]{ = \purple{ \sf{ {(a)}^{0} \: . \: { \purple{ \sf{ {(r)}^{ \cancel{pq} - \cancel{pq} - \cancel{q} + \cancel{r} + \cancel{qr} - \cancel{qp} - \cancel{r} + \cancel{p} + \cancel{qp} - \cancel{qr} - \cancel{p} + \cancel{q}}}}}}}}[/tex]
[tex]{ = \purple{ \sf {(a)}^{0} \: . \: {(r)}^{0}}} [/tex]
[tex]{ = \purple{ \sf{(1) \: . \: (1)}}}[/tex]
[tex]{ = \boxed{ \red{}{ \sf{1}}}}[/tex]
Answer:
Proof below.
Step-by-step explanation:
General form of a geometric sequence:
[tex]\boxed{a_n=ar^{n-1}}[/tex]
Where:
- [tex]a_n[/tex] is the nth term.
- a is the first term.
- r is the common ratio.
- n is the position of the term.
If the pth, qth, rth terms of the geometric progression are a, b, c respectively, then:
[tex]a_p=ar^{p-1}=a[/tex]
[tex]a_q=ar^{q-1}=b[/tex]
[tex]a_r=ar^{r-1}=c[/tex]
Substitute the expressions for a, b and c into the LHS of the given equation and solve:
[tex]\large\begin{aligned} a^{q-r}\cdot b^{r-p}\cdot c^{p-q}&=(ar^{p-1})^{q-r}\cdot(ar^{q-1})^{r-p} \cdot (ar^{r-1})^{p-q}\\\\&=a^{(q-r)}\cdot r^{(p-1)(q-r)}\cdot a^{(r-p)} \cdot r^{(q-1)(r-p)} \cdot a^{(p-q)} \cdot r^{(r-1)(p-q)}\\\\&=a^{(q-r)}\cdot a^{(r-p)} \cdot a^{(p-q)} \cdot r^{(p-1)(q-r)}\cdot r^{(q-1)(r-p)}\cdot r^{(r-1)(p-q)}\\\\&=a^{(q-r)+(r-p)+(p-q)}\cdot r^{(p-1)(q-r)+(q-1)(r-p)+(r-1)(p-q)}\\\\&=a^{0}\cdot r^{(pq-pr-q+r)+(rq-pq-r+p)+(pr-rq-p+q)}\\\\&=a^0\cdot r^{0}\\\\&=1\cdot 1\\\\&=1\end{aligned}[/tex]
Hence proving that:
[tex]a^{q-r}\cdot b^{r-p}\cdot c^{p-q}=1[/tex]
------------------------------------------------------------------------
Exponent rules used:
[tex](a^b)^c=a^{bc}[/tex]
[tex]a^b \cdot a^c=a^{b+c}[/tex]
[tex]a^0=1[/tex]