If 5 / y = 7 / x = 24 and 12 / y + 2 / x = 24, find the ratio of x to y.
A. 1 / 6
B. 2 / 7
C. 5 / 12
D. 5 / 7



Answer:
----------------------------
Correct choice is D
Answer:
[tex]\textsf{D)} \quad \dfrac{5}{7}[/tex]
Step-by-step explanation:
Given equations:
[tex]\begin{cases}\dfrac{5}{y}+\dfrac{7}{x}=24\\\\\dfrac{12}{y}+\dfrac{2}{x}=24\end{cases}[/tex]
Rearrange the first equation to eliminate the fractions:
[tex]\dfrac{5}{y}+\dfrac{7}{x}=24[/tex]
[tex]\implies \dfrac{5x}{xy}+\dfrac{7y}{xy}=24[/tex]
[tex]\implies \dfrac{5x+7y}{xy}=24[/tex]
[tex]\implies 5x+7y=24xy[/tex]
Rearrange the second equation to eliminate the fractions:
[tex]\dfrac{12}{y}+\dfrac{2}{x}=24[/tex]
[tex]\implies \dfrac{12x}{xy}+\dfrac{2y}{xy}=24[/tex]
[tex]\implies \dfrac{12x+2y}{xy}=24[/tex]
[tex]\implies 12x+2y=24xy[/tex]
Substitute the first equation into the second equation:
[tex]\implies 12x+2y=5x+7y[/tex]
Rearrange so that x is on the left side and y is on the right side:
[tex]\implies 12x-5x=7y-2y[/tex]
[tex]\implies 7x=5y[/tex]
Therefore, the ratio of x to y is:
[tex]\implies \dfrac{x}{y}=\dfrac{5}{7}[/tex]