Respuesta :

Answer:

  • D)  5/7

----------------------------

Given equations

  • 5/y + 7/x = 24
  • 12/y + 2/x = 24

Clear fractions

  • 5/y + 7/x = 24    ⇒  (5x + 7y)/(xy) = 24    ⇒   5x + 7y = 24xy
  • 12/y + 2/x = 24   ⇒  (12x + 2y)/(xy) = 24  ⇒   12x + 2y = 24xy

Compare the two equations, find the x:y ratio

  • 5x + 7y = 12x + 2y
  • 12x - 5x = 7y - 2y
  • 7x = 5y
  • x/y = 5/7

Correct choice is D

Answer:

[tex]\textsf{D)} \quad \dfrac{5}{7}[/tex]

Step-by-step explanation:

Given equations:

[tex]\begin{cases}\dfrac{5}{y}+\dfrac{7}{x}=24\\\\\dfrac{12}{y}+\dfrac{2}{x}=24\end{cases}[/tex]

Rearrange the first equation to eliminate the fractions:

[tex]\dfrac{5}{y}+\dfrac{7}{x}=24[/tex]

[tex]\implies \dfrac{5x}{xy}+\dfrac{7y}{xy}=24[/tex]

[tex]\implies \dfrac{5x+7y}{xy}=24[/tex]

[tex]\implies 5x+7y=24xy[/tex]

Rearrange the second equation to eliminate the fractions:

[tex]\dfrac{12}{y}+\dfrac{2}{x}=24[/tex]

[tex]\implies \dfrac{12x}{xy}+\dfrac{2y}{xy}=24[/tex]

[tex]\implies \dfrac{12x+2y}{xy}=24[/tex]

[tex]\implies 12x+2y=24xy[/tex]

Substitute the first equation into the second equation:

[tex]\implies 12x+2y=5x+7y[/tex]

Rearrange so that x is on the left side and y is on the right side:

[tex]\implies 12x-5x=7y-2y[/tex]

[tex]\implies 7x=5y[/tex]

Therefore, the ratio of x to y is:

[tex]\implies \dfrac{x}{y}=\dfrac{5}{7}[/tex]

ACCESS MORE