please complete both question
this is urgent so please try and complete it as fast as possible
due today ​

please complete both question this is urgent so please try and complete it as fast as possible due today class=

Respuesta :

Answer:

[tex]\textsf{a)} \quad x=\dfrac{25(7-\sqrt{13})}{3}=28.2870727\; \sf mm[/tex]

[tex]\textsf{b)} \quad V=379037.8082\; \sf mm^3[/tex]

Explanation:

[tex]\boxed{\begin{minipage}{5 cm}\underline{Volume of a rectangular prism}\\\\$V=w\:l\:h$\\\\where:\\ \phantom{ww}$\bullet$ $w$ is the width of the base. \\ \phantom{ww}$\bullet$ $l$ is the length of the base. \\ \phantom{ww}$\bullet$ $h$ is the height.\\\end{minipage}}[/tex]

Given:

  • l = 200 mm
  • w = 150 mm

The dimensions of the rectangular prism in terms of x are:

  • Length = 200 - 2x
  • Width = 150 - 2x
  • Height = x

Substitute these values into the formula for volume to create an equation in terms of x:

[tex]\begin{aligned}\implies V&=(150-2x)(200-2x)x\\&=(30000-700x+4x^2)x\\&=4x^3-700x^2+30000x\end{aligned}[/tex]

To find the value of x that will give the maximum volume, differentiate the equation for volume.

[tex]\begin{aligned}\implies \dfrac{\text{d}V}{\text{d}x}&=3 \cdot 4x^{3-1}-2 \cdot 700x^{2-1}+30000x^{1-1}\\&=12x^2-1400x+30000\end{aligned}[/tex]

Set the derivative to zero and solve for x using the quadratic formula:

[tex]\implies x=\dfrac{-(-1400) \pm \sqrt{(-1400)^2-4(12)(30000)}}{2(12)}[/tex]

[tex]\implies x=\dfrac{1400 \pm \sqrt{520000}}{24}[/tex]

[tex]\implies x=\dfrac{1400 \pm \sqrt{40000 \cdot 13}}{24}[/tex]

[tex]\implies x=\dfrac{1400 \pm \sqrt{40000}\sqrt{13}}{24}[/tex]

[tex]\implies x=\dfrac{1400 \pm 200\sqrt{13}}{24}[/tex]

[tex]\implies x=\dfrac{175\pm 25\sqrt{13}}{3}[/tex]

[tex]\implies x=\dfrac{25(7\pm\sqrt{13})}{3}[/tex]

To determine which value of x will give the maximum volume, differentiate again:

[tex]\begin{aligned}\implies \dfrac{\text{d}^2V}{\text{d}x^2}&=2 \cdot12x^{2-1}-1400x^{1-1}+0\\&=24x-1400\end{aligned}[/tex]

Substitute both values of x into the second derivative:

[tex]x=\dfrac{25(7+\sqrt{13})}{3} \implies \dfrac{\text{d}^2V}{\text{d}x^2}=721.1102551 > 0\implies \sf minimum[/tex]

[tex]x=\dfrac{25(7-\sqrt{13})}{3} \implies \dfrac{\text{d}^2V}{\text{d}x^2}=-721.1102551 < 0\implies \sf maximum[/tex]

Therefore, the value of x which will give the maximum volume is:

[tex]x=\dfrac{25(7-\sqrt{13})}{3}=28.2870727\; \sf mm[/tex]

To find the maximum volume of the box, substitute the found value of x into the equation for volume:

[tex]\begin{aligned}\implies V_{\sf max}&=4\left(\dfrac{25(7-\sqrt{13})}{3}\right)^3-700 \left(\dfrac{25(7-\sqrt{13})}{3}\right)^2+30000 \left (\dfrac{25(7-\sqrt{13})}{3}\right)\\\\&=379037.8082\; \sf mm^3\end{aligned}[/tex]

The dimensions of the box with maximum possible volume will be:

  • Length = 143.4 mm (1 d.p.)
  • Width = 93.4 mm (1 d.p.)
  • Height = 28.3 mm (1 d.p.)

ACCESS MORE