Respuesta :
Answer:
Approximately [tex]1.3\; {\rm m\cdot s^{-1}}[/tex].
Explanation:
When an ideal spring with spring constant [tex]k[/tex] is displaced by [tex]x[/tex] from equilibrium, the elastic potential energy ([tex]{\rm EPE}[/tex]) stored in the spring will be:
[tex]\begin{aligned}{\rm PE} &= \frac{1}{2}\, k\, x^{2}\end{aligned}[/tex].
If an object of mass [tex]m[/tex] is travelling at a speed of [tex]v[/tex], the kinetic energy ([tex]{\rm KE}[/tex]) of that object will be:
[tex]\begin{aligned}{\rm KE} &= \frac{1}{2}\, m\, v^{2}\end{aligned}[/tex].
Under the assumptions of this question, all the elastic potential energy ([tex]{\rm EPE}[/tex]) stored in the spring would have been turned into the kinetic energy ([tex]{\rm KE}[/tex]) of the disk.
Let [tex]k[/tex] and [tex]x[/tex] denote the spring constant and displacement from equilibrium of this spring. Let [tex]m[/tex] and [tex]v[/tex] denote the mass and speed of the disk. Apply unit conversion and ensure that the displacement of the spring is in standard units (meters): [tex]x = 4\; {\rm cm} = 0.04\; {\rm m}[/tex].
[tex]{\rm EPE} = {\rm KE}[/tex].
[tex]\begin{aligned}\frac{1}{2}\, m\, v^{2} &= {\rm KE} = {\rm EPE} = \frac{1}{2}\, k\, x^{2}\end{aligned}[/tex].
Rearrange this equation to find the speed of the disk [tex]v[/tex]:
[tex]\begin{aligned}v^{2} = \frac{k\, x^{2}}{m}\end{aligned}[/tex].
Since speed [tex]v \ge 0[/tex]:
[tex]\begin{aligned}v &= \sqrt{\frac{k\, x^{2}}{m}} \\ &= x\, \sqrt{\frac{k}{m}}\\ &= 0.04\; {\rm m} \times\sqrt{\frac{155\; {\rm N \cdot m^{-1}}}{0.14\; {\rm kg}}} \\ &\approx 1.3\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
(Note that [tex]1\; {\rm N \cdot m^{-1}} = 1\; {\rm (kg \cdot m\cdot s^{-2}) \cdot m^{-1}} = 1\; {\rm kg \cdot s^{-2}}[/tex].)
Hence, the speed of the disk would be approximately [tex]1.3\; {\rm m\cdot s^{-1}}[/tex].