Assuming friction =0 , the computed acceleration is 6.12736 x 10¹⁷m/s².
[tex]\lim_{n \to \330} a_n =\alpha \\[/tex]
[tex]\alpha =\left \{ {{y=2} \atop {x=2}} \right.[/tex]
[tex]Frequency= \frac{1}{3.69}=0.2710[/tex]
[tex]E=h\frac{c}{y}[/tex]
[tex]v=c/y[/tex]
[tex]y=c/v[/tex]
[tex]y=\frac{3*10^8}{0.2710}[/tex]
[tex]y=1.10701 * 10^9m[/tex]
[tex]da=ydy\\\\\int\limits^{} \, da=\int\limits^{} \, ydy------[integrating]\\\\a=\frac{y^2}{2}[/tex]
[tex]a=\frac{(1.10701*10^9)^2}{2} \\\\a=1.22547 * 10^{18}/2\\\\a=6.1273 *10^{17} m/s^{2}[/tex]
Find more about acceleration -
https://brainly.com/question/2303856
#SPJ4