Respuesta :

The corresponding areas under the curves for y = 2x-x² in the interval [1, 2] and y = x³-6x²+8x in the interval [0, 4] are 2/3 unit² and 0 unit²

How to find the area under the curve?

Given:

1. y = 2x-x² in the interval [1, 2]

2. y = x³-6x²+8x in the interval [0, 4]

In order to find  the area under the curve for these functions for the given intervals, we will take the integral of the functions and use the intervals as upper and lower limits: Thus:

y = 2x-x² in the interval [1, 2]  will be:

[tex]\int\limits^2_1 {2x-x^{2} } \, dx = \left[\frac{ 2x^2}{2}-\frac{ x^3}{3}\right]_1^2[/tex]

                   [tex]= \left[x^{2} -\frac{ x^3}{3}\right]_1^2[/tex]

Substitute the value of the upper and lower limits into x:

               =  [2²- 2³/3] - [1²- 1³/3]

              =   [4 - 8/3] - [ 1 - 1/3]

              =   [4/3] - [2/3]

              = 2/3 unit²

y = x³-6x²+8x in the interval [0, 4] will be:

 [tex]\int\limits^4_0 {x^{3} -6x^{2} + 8x } \, dx = \left[\frac{ x^4}{4}-\frac{ 6x^3}{3}+\frac{ 8x^2}{2}\right]_0^4[/tex]

                               [tex]= \left[\frac{ x^4}{4}- 2x^3+4x^2\right]_0^4[/tex]

                              = [4⁴/4 - 2(4)³ + 4(4)²] - [0⁴/4 - 2(0)³ + 4(0)²]

                              =  [ 64 - 128 + 64] - [0 - 0 -0]

                              = 0 unit²

Therefore, the areas under the curves y = 2x-x² in the interval [1, 2]

and y = x³-6x²+8x in the interval [0, 4] are 2/3 unit² and 0 unit² respectively

Learn more about area under the curve on:

https://brainly.com/question/20733870

#SPJ1

ACCESS MORE