Respuesta :
The dimension of the box is:
Bottom length [tex]3\sqrt[3]{18}[/tex] m
Height [tex]2\sqrt[3]{18}[/tex] m
Differential
If the length of the bottom is x and the height is y. The volume of the box equation will be:
[tex]V=x^{2} y=324[/tex]
To find the cost for making the box is measure the surface area of box (1 bottom and 4 side)
[tex]A=x^{2} +4xy[/tex]
And if the material of bottom is $40 per meter square and the sides is $30 per meter square, the cost for making the box is:
[tex]cost=40(A_{bottom})+30(A_{sides})\\cost=40(x^{2} )+30(4xy)\\cost=40x^{2} +120xy[/tex]
From volume equation we can substitute one variable to make one variable function.
[tex]V=x^{2} y=324[/tex]
[tex]x^{2} y=324\\y=\frac{324}{x^{2} }[/tex]
Let's substitute y to cost function.
[tex]cost=40x^{2} +120xy\\cost=40x^{2} +120x(\frac{324}{x^{2} } )\\cost=40x^{2} +\frac{38880}{x}[/tex]
I know there is big number, so let's make it become exponent.
[tex]cost=40x^{2} +\frac{38880}{x}\\cost=2^{3}5x^{2} +2^{5} 3^{5}5x^{-1}[/tex]
To make the minimal cost, we can differentiate the cost function.
[tex]cost=2^{3}5x^{2} +2^{5} 3^{5}5x^{-1}\\\frac{dy}{dx}=(2)2^{3}5x+(-1)2^{5} 3^{5}5x^{-2}\\\frac{dy}{dx}=2^{4}5x-2^{5}3^{5}5x^{-2}[/tex]
After we differentiete it, when we find the minimum/ maximum point, we equal the equation to zero.
[tex]2^{4}5x-2^{5}3^{5}5x^{-2}=0\\2^{4}5x=2^{5}3^{5}5x^{-2}\\x^{3}=2.3^{5}\\x=(2.3^{5})^{\frac{1}{3} } \\x=2^{\frac{1}{3} } 3^{\frac{5}{3} }\\x=3\sqrt[3]{2.3^{2} } \\x=3\sqrt[3]{18}[/tex]
Then we got the length of the bottom. After that we find the height of the box (y)
[tex]y=\frac{324}{x^{2} }\\y=\frac{324}{(2^{\frac{1}{3}}3^{\frac{5}{3} } )^{2} }\\y=\frac{2^{2} 3^{4} }{2^{\frac{2}{3}}3^{\frac{10}{3} } }\\y=2^{\frac{4}{3} }3^{\frac{2}{3} }\\y=2\sqrt[3]{2.3^{2} } \\y=2\sqrt[3]{18}[/tex]
Learn more about differential here: https://brainly.com/question/24062595
#SPJ4
Otras preguntas
