Problem statement: Find the monthly payment
Method: The monthly payment formula is given by:
[tex]A=P\frac{r(1+r)^n}{(1+r)^n-1}[/tex]where
In our case
[tex]\begin{gathered} P=\text{ \$363,000} \\ n=5(years)\times12(\frac{months}{\text{year}})=60\text{months} \\ \\ r=\frac{\text{annual rate}}{n\nu mber\text{ of times componded per year}}=\frac{15\text{ \%}}{12}=\frac{15}{100\times12}=0.0125 \end{gathered}[/tex]The next step will be to substitute the above values into the formula
[tex]\begin{gathered} A=363,000\times\frac{0.0125(1+0.0125)^{60}}{(1+0.0125)^{60}-1} \\ A=363,000\times0.02379 \\ A=\text{ \$8635.7}4 \end{gathered}[/tex]Therefore, Michael's monthly payment will be $8635.74