Find the missing coordinates for the isosceles trapezoid.Ba, c)C(1,?)A(0,0)D(?,?)C = (b.D=(Word Bank:b-a a ba-b a + b c 0Blank 1:Blank 2:Blank 3:

Find the missing coordinates for the isosceles trapezoidBa cC1A00DC bDWord Bankba a bab a b c 0Blank 1Blank 2Blank 3 class=
Find the missing coordinates for the isosceles trapezoidBa cC1A00DC bDWord Bankba a bab a b c 0Blank 1Blank 2Blank 3 class=

Respuesta :

From the figure

We have the folloing points

[tex]A(0,0),B(a,c),C(b,-),D(-,-)_{}[/tex]

We need to find the missing points

Since the trapezoid is isosceles the side AB = Side CD

Considering coordinates B and C

let the missing point in C be z then

[tex]\begin{gathered} B=(a,c) \\ C=(b,z) \end{gathered}[/tex]

since Points B and C lie on the same y axis then

z = c.

Hence the coordinate C becomes

[tex]C=(b,c)[/tex]

Next we need to find the missing points in D

let the missing x coordinate be x

let the missing y cordinate be y

Therefore

[tex]D=(x,y)[/tex]

From the Graph,

The point Dlie on the x axis hence the coordinate of y is 0

hence y = 0

Therefore point D will become

[tex]D=(x,0)[/tex]

Finally we are to find the value of x

Recall that the trapezoid is isosceles

hence

[tex]\text{length AB = length CD}[/tex]

Applying the formula for distance between two points

The formula is give as

[tex]\text{Distance =}\sqrt[]{(x_2-x_1)^2-(y_2-y_1)^2}[/tex]

For points AB

A=(0,0), B = ( a,c)

Hence

[tex]\begin{gathered} x_1=0,x_2=a \\ y_1=0,y_2=c \end{gathered}[/tex]

Therefore distance AB is

[tex]\begin{gathered} AB=\sqrt[]{(a-0)^2+(c-0)^2} \\ AB=\sqrt[]{a^2+c^2} \end{gathered}[/tex]

For points CD

C = (b,c), D = (x,0)

Hence,

[tex]\begin{gathered} x_1=b,x_2=x \\ y_1=c,y_2=0 \end{gathered}[/tex]

Therefore, distance CD is

[tex]\begin{gathered} CD=\sqrt[]{(x-b)^2+(0-c)^2} \\ CD=\sqrt[]{(x-b)^2+c^2} \end{gathered}[/tex]

Recall distance AB = distance CD

Hence

[tex]\begin{gathered} AB=CD \\ \sqrt[]{a^2+c^2}=\sqrt[]{(x-b)^2+c^2} \end{gathered}[/tex]

Simplifying further

we will get

[tex]\begin{gathered} a^2+c^2=(x-b)^2+c^2 \\ a^2+c^2-c^2=(x-b)^2 \\ a^2=(x-b)^2 \\ \text{taking square root of both sides} \\ a=x-b \\ x=a+b \end{gathered}[/tex]

Therefore,

The coordinate of the point D is

[tex]D=(a+b,0)[/tex]