Respuesta :
Answer:
a. 66 kg m/s
b. 66 kg m/s
c. 3.4 m/s
Explanation:
Part a.
The total initial momentum of objects A and B is calculated as
[tex]p_i=m_Av_{Ai}+m_Bv_{Bi}[/tex]Where m is the mass and v is the initial velocity for each object. Replacing the values, we get:
[tex]\begin{gathered} m_A=10kg \\ v_{Ai}=5\text{ m/s} \\ m_B=8kg \\ v_{Bi}=2m/s_{} \\ p_i=(10kg)(5m/s)+(8kg)(2m/s) \\ p_i=50kg\text{ m/s + 16 }kg\text{ m/s} \\ p_i=66kg\text{ m/s} \end{gathered}[/tex]Therefore, the total initial momentum of objects A and B is 66 kg m/s
Part b.
By the conservation of momentum, the total final momentum is equal to the total initial momentum, so
[tex]\begin{gathered} p_f=p_i \\ p_f=66kg\text{ m/s} \end{gathered}[/tex]Therefore, the total final momentum of objects A and B is 66 kg m/s.
Part c.
The final momentum is also equal to:
[tex]p_f=m_Av_{fA}+m_Bv_{fB}[/tex]Solving for the final velocity of object A, we get:
[tex]\begin{gathered} p_f-m_Bv_{Bf}=m_Av_{fA} \\ v_{fA}=\frac{p_f-m_Bv_{Bf}}{m_A} \end{gathered}[/tex]Then, we can replace the values to get:
[tex]\begin{gathered} p_f=66kg\text{ m/s} \\ m_A=10kg \\ m_B=8kg_{} \\ v_{Bf}=4m/s \\ v_{fA}=\frac{66kg\text{ m/s - (8}kg)(4m/s)}{10kg} \\ v_{fA}=\frac{66kg\text{ m/s - 32 }kg\text{ m/s}}{10kg} \\ v_{fA}=\frac{34kg\text{ m/s}}{10kg} \\ v_{fA}=3.4m/s \end{gathered}[/tex]Therefore, the final velocity of object A is 3.4 m/s