Given the word problem, we can deduce the following information:
Container A:
d=32 ft
h=16 ft
Container B:
d=30 ft
h=18 ft
To determine the volume of water remaining in container A, we first get the volume of container A by using the formula:
[tex]V=\pi(\frac{d}{2})^2h[/tex]We plug in what we know:
[tex]\begin{gathered} V=\pi(\frac{d}{2})^{2}h \\ V=\pi(\frac{32}{2})^2(16) \\ Calculate \\ V=12867.96\text{ }ft^3 \end{gathered}[/tex]Next, we get the volume of container B using the same formula:
[tex]\begin{gathered} V=\pi(\frac{d}{2})^{2}h \\ V=\pi(\frac{30}{2})^2(18) \\ Calculate \\ V=12723.45\text{ }ft^3 \end{gathered}[/tex]Now, we get the difference:
[tex]\begin{gathered} Volume\text{ }Remaining=12867.96\text{ }ft^3-12723.45\text{ }ft^3 \\ Simplify \\ Volume\text{ }Remaining=144.5\text{ }ft^3 \end{gathered}[/tex]Therefore, the answer is:
[tex]\begin{equation*} 144.5\text{ }ft^3 \end{equation*}[/tex]