Data:
Scale factor: 1/4
[tex]F^{\prime}(1,-\frac{3}{2}),I^{\prime}(2,-1),P^{\prime}(1,2)[/tex]To find the coordinates of vertices of trianlge FIP you divide into the scale factor each ordered pair of F'I'P', as follow:
Division of fractions:
[tex]\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a\cdot d}{b\cdot c}[/tex]For F:
[tex]\begin{gathered} F=\frac{F^{\prime}}{\frac{1}{4}} \\ \\ F(\frac{1}{\frac{1}{4}},\frac{-\frac{3}{2}}{\frac{1}{4}})=F(4,-\frac{12}{2})=F(4,-6) \end{gathered}[/tex]For I:
[tex]\begin{gathered} I=\frac{I^{\prime}}{\frac{1}{4}} \\ \\ I(\frac{2}{\frac{1}{4}},\frac{-1}{\frac{1}{4}})=I(8,-4) \end{gathered}[/tex]For P:
[tex]\begin{gathered} P=\frac{P^{\prime}}{\frac{1}{4}} \\ \\ P(\frac{1}{\frac{1}{4}},\frac{2}{\frac{1}{4}})=P(4,8) \end{gathered}[/tex]Then you have the next coordinates for FIP:[tex]F(4,-6),I(8,-4),P(4,8)[/tex]