Given
[tex]200-T=180(0.94)^t[/tex]Solution
When T=140
[tex]\begin{gathered} 200-T=180(0.94)^{t} \\ \\ 200-140=180(0.94)^t \\ 60=180(0.94)^t \\ \\ 60=180\cdot\:0.94^t \\ Divide\text{ both side 180} \\ \frac{180\cdot \:0.94^t}{180}=\frac{60}{180} \\ \\ simplify \\ 0.94^t=\frac{1}{3} \end{gathered}[/tex]Apply exponent rule
[tex]\begin{gathered} t\ln \left(0.94\right)=\ln \left(\frac{1}{3}\right) \\ \\ t=-\frac{\ln \left(3\right)}{\ln \left(0.94\right)} \\ \\ \\ t=17.7552 \end{gathered}[/tex]The final answer
t =1 7.7552years