Given that
[tex]\ln (x+1)=7[/tex]To solve for x, applying log rules
Where
[tex]\begin{gathered} \ln N=x \\ N=e^x \end{gathered}[/tex]Applying the log rule above to the given expression
[tex]\begin{gathered} \ln (x+1)=7 \\ e^{\ln (x+1)}=e^7 \\ x+1=e^7 \end{gathered}[/tex]Solve for x, i.e make x the subject
[tex]\begin{gathered} x+1=e^7 \\ x=e^7-1 \\ x=1096.63316-1 \\ x=1095.63316 \\ x=1095.6\text{ (nearest tenth)} \end{gathered}[/tex]Hence, x = 1095.6 (nearest tenth)