To find the vertex of a parabola (quadratic equiation) you use the next:
1. Find the axis of simetry (value of x in the vertex) with the next formula:
[tex]\begin{gathered} y=ax^2+bx+c \\ \\ x=\frac{-b}{2a} \end{gathered}[/tex]For the given equation:
b=-4
a=3
[tex]x=\frac{-(-4)}{2(3)}=\frac{4}{6}=\frac{2}{3}[/tex]Axis of simetry x=2/3
2. Find the value of y in the vertex. Use the axis of simetry:
[tex]\begin{gathered} y=3(\frac{2}{3})^2-4(\frac{2}{3})+1 \\ \\ y=3(\frac{4}{9})-\frac{8}{3}+1 \\ \\ y=\frac{12}{9}-\frac{8}{3}+1 \\ \\ y=\frac{4}{3}-\frac{8}{3}+\frac{3}{3} \\ \\ y=-\frac{1}{3} \end{gathered}[/tex]3. The vertex is (2/3 , -1/3)4. Write in vertex form.
General vertex form of a quadratic equation:
[tex]y=a(x-h)^2+k[/tex]The vertex is (h,k)
For the given equation:
a=3
h=2/3
k= -1/3
Equation in vertex form:[tex]y=3(x-\frac{2}{3})^2-\frac{1}{3}[/tex]